Access the full text.
Sign up today, get DeepDyve free for 14 days.
David Wittman, J. Tyson, D. Kirkman, I. Dell’Antonio, G. Bernstein (2000)
Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scalesNature, 405
J. Miralda-Escudé (1991)
The correlation function of galaxy ellipticities produced by gravitational lensingThe Astrophysical Journal, 380
A. Landolt (1992)
UBVRI Photometric Standard Stars in the Magnitude Range 11
A. Hamilton, A. Matthews, Pawan Kumar, E. Lu (1991)
Reconstructing the primordial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxiesThe Astrophysical Journal, 374
C. Steidel, D. Hamilton (1992)
Deep imaging of high redshift QSO fields below the Lyman limit. I - The field of Q0000-263 and galaxies at Z = 3.4The Astronomical Journal, 104
R. Crittenden, P. Natarajan, U. Pen, T. Theuns (2000)
Spin-induced Galaxy Alignments and Their Implications for Weak-Lensing MeasurementsThe Astrophysical Journal, 559
J. Dodds (1993)
Reconstructing the linear power spectrum of cosmological mass fluctuationsMonthly Notices of the Royal Astronomical Society, 267
E. Pierpaoli, D. Scott, M. White (2001)
Power-spectrum normalization from the local abundance of rich clusters of galaxiesMonthly Notices of the Royal Astronomical Society, 325
L. Waerbeke, Y. Mellier, R. Pelló, Ue-Li Pen, H. McCracken, B. Jain (2002)
Likelihood analysis of cosmic shear on simulated and VIRMOS-DESCART dataAstronomy and Astrophysics, 393
P. Schneider, L. Waerbeke, Y. Mellier (2001)
B-modes in cosmic shear from source redshift clusteringAstronomy and Astrophysics, 389
S. Lilly, O. Fèvre, D. Crampton, F. Hammer, L. Tresse (1995)
The Canada-France Redshift Survey. I. Introduction to the Survey, Photometric Catalogs, and Surface Brightness Selection EffectsThe Astrophysical Journal, 455
T. Reiprich, H. Böhringer (1999)
The Mass Function of an X-Ray Flux-limited Sample of Galaxy ClustersThe Astrophysical Journal, 567
A. Melchiorri, J. Silk (2002)
Density of cold dark matterPhysical Review D, 66
O. Lahav, S. Bridle, W. Percival, J. Peacock, G. Efstathiou, C. Baugh, J. Bland-Hawthorn, T. Bridges, R. Cannon, S. Cole, M. Colless, C. Collins, W. Couch, G. Dalton, R. Propris, S. Driver, R. Ellis, C. Frenk, K. Glazebrook, C. Jackson, I. Lewis, S. Lumsden, S. Maddox, D. Madgwick, S. Moody, P. Norberg, B. Peterson, W. Sutherland, K. Taylor (2001)
The 2dF Galaxy Redshift Survey: The Amplitudes of fluctuations in the 2dFGRS and the CMB, and implications for galaxy biasingMonthly Notices of the Royal Astronomical Society, 333
É. Bertin, S. Arnouts (1996)
SExtractor: Software for source extractionAstronomy & Astrophysics Supplement Series, 117
B. Jain, U. Seljak (1996)
Cosmological Model Predictions for Weak Lensing: Linear and Nonlinear RegimesThe Astrophysical Journal, 484
N. Kaiser, G. Squires, T. Broadhurst (1994)
A Method for Weak Lensing ObservationsThe Astrophysical Journal, 449
P. Schneider, L. Waerbeke, M. Kilbinger, Yannick Iaef, Bonn, Mpa, Garching, Aip, París, Cita, Toronto, O. Paris (2002)
Analysis of two-point statistics of cosmic shear - I. Estimators and covariancesAstronomy and Astrophysics, 396
A. Cooray (2002)
Weak lensing of the cosmic microwave background: Power spectrum covariancePhysical Review D, 65
R. Crittenden, P. Natarajan, U. Pen, T. Theuns (2000)
Discriminating Weak Lensing from Intrinsic Spin Correlations Using the Curl-Gradient DecompositionThe Astrophysical Journal, 568
D. Bacon, A. Réfrégier, Richard IoA, Cambridge, Caltech (2000)
Detection of weak gravitational lensing by large-scale structureMonthly Notices of the Royal Astronomical Society, 318
D. Schlegel, D. Finkbeiner, M. Durham, U. Berkeley (1997)
Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR ForegroundsarXiv: Astrophysics
G. Muller, R. Reed, T. Armandroff, T. Boroson, G. Jacoby (1998)
What is better than an 8192x8192 CCD Mosaic imager: two Mosaic wide-field imagers, one for KPNO and one for CTIO, 3355
N. Kaiser (1999)
A New Shear Estimator for Weak-Lensing ObservationsThe Astrophysical Journal, 537
D. Wittman, J. Tyson, G. Bernstein, Robert Lee, I. Dell’Antonio, P. Fischer, D. Smith, M. Blouke (1998)
Big Throughput Camera: the first year, 3355
J. Cohen, D. Hogg, R. Blandford, L. Cowie, E. Hu, A. Songaila, P. Shopbell, Kevin Richberg (1999)
Caltech Faint Galaxy Redshift Survey. X. A Redshift Survey in the Region of the Hubble Deep Field NorthThe Astrophysical Journal, 538
D. Smith, D. Smith, G. Bernstein, G. Bernstein, P. Fischer, M. Jarvis, M. Jarvis (2000)
Weak-Lensing Determination of the Mass in Galaxy HalosThe Astrophysical Journal, 551
D. Huterer, M. White (2002)
Weak Lensing as a Calibrator of the Cluster Mass-Temperature RelationThe Astrophysical Journal Letters, 578
R. Maoli, L. Waerbeke, Y. Mellier, P. Schneider, B. Jain, F. Bernardeau, T. Erben, T. Erben, B. Fort (2000)
Cosmic shear analysis in 50 uncorrelated VLT fields. Implications for $\Omega_0$, $\sigma_8$Astronomy and Astrophysics, 368
P. Schneider, L. Waerbeke, B. Kruse (1997)
A NEW MEASURE FOR COSMIC SHEARMonthly Notices of the Royal Astronomical Society, 296
G. Bernstein, M. Jarvis (2001)
Shapes and Shears, Stars and Smears: Optimal Measurements for Weak LensingThe Astronomical Journal, 123
S. Borgani, P. Rosati, P. Tozzi, S. Stanford, P. Eisenhardt, C. Lidman, B. Holden, R. Ceca, C. Norman, G. Squires (2001)
Measuring Ωm with the ROSAT Deep Cluster SurveyThe Astrophysical Journal, 561
J. Rhodes, A. Réfrégier, E. Groth (1999)
Weak Lensing Measurements: A Revisited Method and Application toHubble Space Telescope ImagesThe Astrophysical Journal, 536
H. Hoekstra, H. Yee, M. Gladders (2002)
Constraints on Ωm and σ8 from Weak Lensing in Red-Sequence Cluster Survey FieldsThe Astrophysical Journal, 577
U. Pen, L. Waerbeke, Y. Mellier (2001)
Gravity and Nongravity Modes in the VIRMOS-DESCART Weak-Lensing SurveyThe Astrophysical Journal, 567
D. Wittman, J. Tyson, V. Margoniner, J. Cohen, I. Laboratories, Lucent Technologies, Caltech, Brown University (2001)
Discovery of a Galaxy Cluster via Weak LensingThe Astrophysical Journal Letters, 557
L. Silberman, A. Dekel, A. Eldar, I. Zehavi (2001)
Cosmological Density and Power Spectrum from Peculiar Velocities: Nonlinear Corrections and Principal Component AnalysisThe Astrophysical Journal, 557
P. Viana, R. Nichol, A. Liddle (2001)
Constraining the Matter Power Spectrum Normalization Using the Sloan Digital Sky Survey/ROSAT All-Sky Survey and REFLEX Cluster SurveysThe Astrophysical Journal Letters, 569
N. Kaiser (1992)
Weak gravitational lensing of distant galaxiesThe Astrophysical Journal, 388
M. Takada, B. Jain (2002)
The kurtosis of the cosmic shear fieldMonthly Notices of the Royal Astronomical Society, 337
D. Schlegel, D. Finkbeiner, M. Davis (1998)
Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation ForegroundsThe Astrophysical Journal, 500
U. Seljak (2001)
Cluster number density normalization from the observed mass–temperature relationMonthly Notices of the Royal Astronomical Society, 337
J. Peacock, S. Dodds (1996)
Non-linear evolution of cosmological power spectraMonthly Notices of the Royal Astronomical Society, 280
F. Valdes, J. Tyson, J. Jarvis (1983)
Alignment of faint galaxy images: cosmological distortion and rotationThe Astrophysical Journal, 271
Jiun-Huei Wu (2000)
Cluster abundance and large-scale structureMonthly Notices of the Royal Astronomical Society, 327
Chong Gu, G. Wahba (1991)
Minimizing GCV/GML Scores with Multiple Smoothing Parameters via the Newton MethodSIAM J. Sci. Comput., 12
We measure seeing-corrected ellipticities for 2 × 106 galaxies with magnitude R 23 in 12 widely separated fields totaling 75 deg2 of sky. At angular scales 30, ellipticity correlations are detected at high significance and exhibit nearly the pure "E mode" behavior expected of weak gravitational lensing. Even when smoothed to the full field size of 25, which is 25 h-1 Mpc at the lens distances, an rms shear variance of 21/2 = 0.0012 ± 0.0003 is detected. At smaller angular scales, there is significant "B-mode" power, an indication of residual uncorrected point-spread function distortions. The data at scales above 30 constrain the power spectrum of matter fluctuations on comoving scales of 10 h-1 Mpc to have 8(m/0.3)0.57 = 0.71 (95% confidence level, CDM, = 0.21), where the systematic error includes statistical and calibration uncertainties, cosmic variance, and a conservative estimate of systematic contamination based upon the detected B-mode signal. This normalization of the power spectrum is lower than, but generally consistent with, previous weak-lensing results, is at the lower end of the 8 range from various analyses of galaxy cluster abundances, and agrees with recent determinations from cosmic microwave background and galaxy clustering. The large and dispersed sky coverage of our survey reduces random errors and cosmic variance, while the relatively shallow depth allows us to use existing redshift survey data to reduce systematic uncertainties in the N(z) distribution to insignificance. Reanalysis of the data with more sophisticated algorithms will hopefully reduce the systematic (B mode) contamination and allow more precise, multidimensional constraint of cosmological parameters.
The Astronomical Journal – IOP Publishing
Published: Mar 1, 2003
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.