Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Mechanisms of Cannabinoid-Receptor–Mediated Inhibition of Synaptic Transmission in Cultured Hippocampal Pyramidal Neurons

Mechanisms of Cannabinoid-Receptor–Mediated Inhibition of Synaptic Transmission in Cultured... Abstract Cannabinoids, such as marijuana, are known to impair learning and memory perhaps through their actions in the hippocampus where cannabinoid receptors are expressed at high density. Although cannabinoid receptor activation decreases glutamatergic synaptic transmission in cultured hippocampal neurons, the mechanisms of this action are not known. Cannabinoid receptor activation also inhibits calcium channels that support neurotransmitter release in these cells, making modulation of these channels a candidate for cannabinoid-receptor–mediated effects on synaptic transmission. Whole cell patch-clamp recordings of glutamatergic neurons cultured from the CA1 and CA3 regions of the hippocampus were used to identify the mechanisms of the effects of cannabinoids on synaptic transmission. Cannabinoid receptor activation reduced excitatory postsynaptic current (EPSC) size by ∼50% but had no effect on the amplitude of spontaneous miniature EPSCs (mEPSCs). This reduction in EPSC size was accompanied by an increase in paired-pulse facilitation measured in low (1 mM) extracellular calcium and by a decrease in paired-pulse depression measured in normal (2.5 mM) extracellular calcium. Together, these results strongly support the hypothesis that cannabinoid receptor activation decreases EPSC size by reducing release of neurotransmitter presynaptically while having no effect on postsynaptic sensitivity to glutamate. Further experiments were done to identify the molecular mechanisms underlying this cannabinoid-receptor–mediated decrease in neurotransmitter release. Cannabinoid receptor activation had no effect on the size of the presynaptic pool of readily releasable neurotransmitter-filled vesicles, eliminating reduction in pool size as a mechanism for cannabinoid-receptor–mediated effects. After blockade of Q- and N-type calcium channels with ω-agatoxin TK and ω-conotoxin GVIA; however, activation of cannabinoid receptors reduced EPSC size by only 14%. These results indicate that cannabinoid receptor activation reduces the probability that neurotransmitter will be released in response to an action potential via an inhibition of presynaptic Q- and N-type calcium channels. This molecular mechanism most likely contributes to the impairment of learning and memory produced by cannabinoids and may participate in the analgesic, antiemetic, and anticonvulsive effects of these drugs as well. Footnotes Address for reprint requests: Molecular Neurobiology Laboratory, The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, CA 92037. The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “ advertisement ” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Copyright © 1999 The American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Mechanisms of Cannabinoid-Receptor–Mediated Inhibition of Synaptic Transmission in Cultured Hippocampal Pyramidal Neurons

Journal of Neurophysiology , Volume 82 (3): 1286 – Sep 1, 1999

Loading next page...
 
/lp/the-american-physiological-society/mechanisms-of-cannabinoid-receptor-mediated-inhibition-of-synaptic-cZlI47o6A8

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
The American Physiological Society
Copyright
Copyright © 2011 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract Cannabinoids, such as marijuana, are known to impair learning and memory perhaps through their actions in the hippocampus where cannabinoid receptors are expressed at high density. Although cannabinoid receptor activation decreases glutamatergic synaptic transmission in cultured hippocampal neurons, the mechanisms of this action are not known. Cannabinoid receptor activation also inhibits calcium channels that support neurotransmitter release in these cells, making modulation of these channels a candidate for cannabinoid-receptor–mediated effects on synaptic transmission. Whole cell patch-clamp recordings of glutamatergic neurons cultured from the CA1 and CA3 regions of the hippocampus were used to identify the mechanisms of the effects of cannabinoids on synaptic transmission. Cannabinoid receptor activation reduced excitatory postsynaptic current (EPSC) size by ∼50% but had no effect on the amplitude of spontaneous miniature EPSCs (mEPSCs). This reduction in EPSC size was accompanied by an increase in paired-pulse facilitation measured in low (1 mM) extracellular calcium and by a decrease in paired-pulse depression measured in normal (2.5 mM) extracellular calcium. Together, these results strongly support the hypothesis that cannabinoid receptor activation decreases EPSC size by reducing release of neurotransmitter presynaptically while having no effect on postsynaptic sensitivity to glutamate. Further experiments were done to identify the molecular mechanisms underlying this cannabinoid-receptor–mediated decrease in neurotransmitter release. Cannabinoid receptor activation had no effect on the size of the presynaptic pool of readily releasable neurotransmitter-filled vesicles, eliminating reduction in pool size as a mechanism for cannabinoid-receptor–mediated effects. After blockade of Q- and N-type calcium channels with ω-agatoxin TK and ω-conotoxin GVIA; however, activation of cannabinoid receptors reduced EPSC size by only 14%. These results indicate that cannabinoid receptor activation reduces the probability that neurotransmitter will be released in response to an action potential via an inhibition of presynaptic Q- and N-type calcium channels. This molecular mechanism most likely contributes to the impairment of learning and memory produced by cannabinoids and may participate in the analgesic, antiemetic, and anticonvulsive effects of these drugs as well. Footnotes Address for reprint requests: Molecular Neurobiology Laboratory, The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, CA 92037. The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “ advertisement ” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Copyright © 1999 The American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Sep 1, 1999

There are no references for this article.