Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Lateral extrusion in the eastern Alps, Part 1: Boundary conditions and experiments scaled for gravity

Lateral extrusion in the eastern Alps, Part 1: Boundary conditions and experiments scaled for... Lateral extrusion encompasses extensional collapse (gravitational spreading away from a topographic high in an orogenic belt) and tectonic escape (plane strain horizontal motion of wedges driven by forces applied to their boundaries). In the Eastern Alps it resulted from (1) an overall northerly compression (Apulia against Eurasia), (2) a strong foreland (Bohemian massif), (3) lack of constraint along a lateral boundary (Carpathian region), and (4) a previously thickened, gravitationally unstable, thermally weakened crust (Eastern Alpine orogenic belt). Six indentation experiments reproduce lateral extrusion at lithospheric scale. The models have two to four lithospheric layers, with a Mohr/Coulomb rheology for the upper and a viscous rheology for the lower crust. The lithosphere rests upon a low‐viscosity asthenosphere. A broad indenter, a narrow deformable area, and a weakly constrained eastern margin fullfill as closely as possible conditions in the Eastern Alps. Indentation produces both thickening in front of the indenter and escape of triangular wedges. Lateral variations in crustal thickness become attenuated by gravitational spreading. The overall fault pattern includes domains of reverse, strike‐slip, oblique normal, and pure normal faults. Strike‐slip faults in conjugate sets develop serially. The narrow width of the deformable area and the strength of the foreland determine the angles between the sets. Gravitational spreading produces a rhombohedral pattern of oblique and pure normal faults along the unconstrained margin. Opposite the unconstrained margin, the indenter front shows thrusts and folds intersecting with the conjugate strike‐slip sets. A triangular indenter favors spreading. High velocity of indentation favors escape. High confinement limits lateral motion, inhibits spreading, and favors thickening. Lateral extrusion in the Eastern Alps is best modeled by (1) a weak lateral confinement, (2) a broad and straight indenter, (3) a narrow width of the deformable area, and (4) a rigid foreland. Crustal thickening, lateral escape, and gravitational spreading all contribute to the overall deformation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tectonics Wiley

Lateral extrusion in the eastern Alps, Part 1: Boundary conditions and experiments scaled for gravity

Loading next page...
 
/lp/wiley/lateral-extrusion-in-the-eastern-alps-part-1-boundary-conditions-and-cKl260WHiY

References (38)

Publisher
Wiley
Copyright
Copyright © 1991 by the American Geophysical Union.
ISSN
0278-7407
eISSN
1944-9194
DOI
10.1029/90TC02622
Publisher site
See Article on Publisher Site

Abstract

Lateral extrusion encompasses extensional collapse (gravitational spreading away from a topographic high in an orogenic belt) and tectonic escape (plane strain horizontal motion of wedges driven by forces applied to their boundaries). In the Eastern Alps it resulted from (1) an overall northerly compression (Apulia against Eurasia), (2) a strong foreland (Bohemian massif), (3) lack of constraint along a lateral boundary (Carpathian region), and (4) a previously thickened, gravitationally unstable, thermally weakened crust (Eastern Alpine orogenic belt). Six indentation experiments reproduce lateral extrusion at lithospheric scale. The models have two to four lithospheric layers, with a Mohr/Coulomb rheology for the upper and a viscous rheology for the lower crust. The lithosphere rests upon a low‐viscosity asthenosphere. A broad indenter, a narrow deformable area, and a weakly constrained eastern margin fullfill as closely as possible conditions in the Eastern Alps. Indentation produces both thickening in front of the indenter and escape of triangular wedges. Lateral variations in crustal thickness become attenuated by gravitational spreading. The overall fault pattern includes domains of reverse, strike‐slip, oblique normal, and pure normal faults. Strike‐slip faults in conjugate sets develop serially. The narrow width of the deformable area and the strength of the foreland determine the angles between the sets. Gravitational spreading produces a rhombohedral pattern of oblique and pure normal faults along the unconstrained margin. Opposite the unconstrained margin, the indenter front shows thrusts and folds intersecting with the conjugate strike‐slip sets. A triangular indenter favors spreading. High velocity of indentation favors escape. High confinement limits lateral motion, inhibits spreading, and favors thickening. Lateral extrusion in the Eastern Alps is best modeled by (1) a weak lateral confinement, (2) a broad and straight indenter, (3) a narrow width of the deformable area, and (4) a rigid foreland. Crustal thickening, lateral escape, and gravitational spreading all contribute to the overall deformation.

Journal

TectonicsWiley

Published: Apr 1, 1991

There are no references for this article.