Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A framework for fiber delay‐line buffers in packet‐based asynchronous multifiber optical networks (PAMFONET)

A framework for fiber delay‐line buffers in packet‐based asynchronous multifiber optical networks... A major challenge in packet‐based optical networks is packet contention, which occurs when two or more packets are heading to the same output at the same time. To resolve contention in the optical domain, a fundamental approach is fiber delay‐line (FDL) buffering, in which packets can be delayed for a fixed amount of time. In the literature, the performance of FDL buffering has been studied extensively. However, most existing works are based on an assumption that there is only one fiber per link in the network. In this paper, we address the architecture and performance of FDL buffers in packet‐based asynchronous multifiber optical networks (PAMFONET), in which each link in the network may consist of multiple optical fibers. We propose a framework for FDL buffers in PAMFONET, in which we provide three essential architectures and corresponding packet scheduling policies. Extensive simulation results show that, with appropriate settings, the same number of FDLs can lead to better performance in multifiber networks than in single‐fiber networks. Copyright © 2011 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Communication Systems Wiley

A framework for fiber delay‐line buffers in packet‐based asynchronous multifiber optical networks (PAMFONET)

Loading next page...
 
/lp/wiley/a-framework-for-fiber-delay-line-buffers-in-packet-based-asynchronous-addx2jOM3h

References (26)

Publisher
Wiley
Copyright
Copyright © 2012 John Wiley & Sons, Ltd.
ISSN
1074-5351
eISSN
1099-1131
DOI
10.1002/dac.1261
Publisher site
See Article on Publisher Site

Abstract

A major challenge in packet‐based optical networks is packet contention, which occurs when two or more packets are heading to the same output at the same time. To resolve contention in the optical domain, a fundamental approach is fiber delay‐line (FDL) buffering, in which packets can be delayed for a fixed amount of time. In the literature, the performance of FDL buffering has been studied extensively. However, most existing works are based on an assumption that there is only one fiber per link in the network. In this paper, we address the architecture and performance of FDL buffers in packet‐based asynchronous multifiber optical networks (PAMFONET), in which each link in the network may consist of multiple optical fibers. We propose a framework for FDL buffers in PAMFONET, in which we provide three essential architectures and corresponding packet scheduling policies. Extensive simulation results show that, with appropriate settings, the same number of FDLs can lead to better performance in multifiber networks than in single‐fiber networks. Copyright © 2011 John Wiley & Sons, Ltd.

Journal

International Journal of Communication SystemsWiley

Published: Feb 1, 2012

Keywords: ; ; ; ; ; ; ; ; ;

There are no references for this article.