Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Root excretion of carboxylic acids and protons in phosphorus-deficient plants

Root excretion of carboxylic acids and protons in phosphorus-deficient plants Phosphorus deficiency-induced metabolic changes related to exudation of carboxylic acids and protons were compared in roots of wheat (Triticum aestivum L. cv Haro), tomato (Lycopersicon esculentum L., cv. Moneymaker), chickpea (Cicer arietinum) and white lupin (Lupinus albus L. cv. Amiga), grown in a hydroponic culture system. P deficiency strongly increased the net release of protons from roots of tomato, chickpea and white lupin, but only small effects were observed in wheat. Release of protons coincided with increased exudation of carboxylic acids in roots of chickpea and white lupin, but not in those of tomato and wheat. P deficiency-induced exudation of carboxylic acids in chickpea and white lupin was associated with a larger increase of carboxylic acid concentrations in the roots and lower accumulation of carboxylates in the shoot tissue compared to that in wheat and tomato. - Citric acid was one of the major organic acids accumulated in the roots of all investigated species in response to P deficiency, and this was associated with increased activity and enzyme protein levels of PEP carboxylase, which is required for biosynthesis of citrate. Accumulation of citric acid was most pronounced in the roots of P-deficient white lupin, chickpea and tomato. Increased PEP carboxylase activity in the roots of these plants coincided with decreased activity of aconitase, which is involved in the breakdown of citric acid in the TCA cycle. In the roots of P-deficient wheat plants, however, the activities of both PEP carboxylase and aconitase were enhanced, which was associated with little accumulation of citric acid. The results suggest that P deficiency-induced exudation of carboxylic acids depends on the ability to accumulate carboxylic acids in the root tissue, which in turn is determined by biosynthesis, degradation and partitioning of carboxylic acids or related precursors between roots and shoot. In some plant species such as white lupin, there are indications for a specific transport mechanism (anion channel), involved in root exudation of extraordinary high amounts of citric acid. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant and Soil Springer Journals

Root excretion of carboxylic acids and protons in phosphorus-deficient plants

Plant and Soil , Volume 211 (1) – Apr 1, 1999

Loading next page...
 
/lp/springer-journals/root-excretion-of-carboxylic-acids-and-protons-in-phosphorus-deficient-aTNW0xDbzw

References (29)

Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Ecology; Plant Sciences; Plant Physiology; Soil Science & Conservation
ISSN
0032-079X
eISSN
1573-5036
DOI
10.1023/A:1004380832118
Publisher site
See Article on Publisher Site

Abstract

Phosphorus deficiency-induced metabolic changes related to exudation of carboxylic acids and protons were compared in roots of wheat (Triticum aestivum L. cv Haro), tomato (Lycopersicon esculentum L., cv. Moneymaker), chickpea (Cicer arietinum) and white lupin (Lupinus albus L. cv. Amiga), grown in a hydroponic culture system. P deficiency strongly increased the net release of protons from roots of tomato, chickpea and white lupin, but only small effects were observed in wheat. Release of protons coincided with increased exudation of carboxylic acids in roots of chickpea and white lupin, but not in those of tomato and wheat. P deficiency-induced exudation of carboxylic acids in chickpea and white lupin was associated with a larger increase of carboxylic acid concentrations in the roots and lower accumulation of carboxylates in the shoot tissue compared to that in wheat and tomato. - Citric acid was one of the major organic acids accumulated in the roots of all investigated species in response to P deficiency, and this was associated with increased activity and enzyme protein levels of PEP carboxylase, which is required for biosynthesis of citrate. Accumulation of citric acid was most pronounced in the roots of P-deficient white lupin, chickpea and tomato. Increased PEP carboxylase activity in the roots of these plants coincided with decreased activity of aconitase, which is involved in the breakdown of citric acid in the TCA cycle. In the roots of P-deficient wheat plants, however, the activities of both PEP carboxylase and aconitase were enhanced, which was associated with little accumulation of citric acid. The results suggest that P deficiency-induced exudation of carboxylic acids depends on the ability to accumulate carboxylic acids in the root tissue, which in turn is determined by biosynthesis, degradation and partitioning of carboxylic acids or related precursors between roots and shoot. In some plant species such as white lupin, there are indications for a specific transport mechanism (anion channel), involved in root exudation of extraordinary high amounts of citric acid.

Journal

Plant and SoilSpringer Journals

Published: Apr 1, 1999

There are no references for this article.