Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Induction of Pathogen Resistance in Barley by Abiotic Stress

Induction of Pathogen Resistance in Barley by Abiotic Stress Abstract: Enhanced resistance of barley (Hordeum vulgare L. cv. Ingrid) against barley powdery mildew (Blumeria graminis f. sp. hordei race A6) was induced by abiotic stress in a concentration‐dependent manner. The papilla‐mediated resistance was not only induced by osmotic stress, but also by proton stress. Resistance was directly correlated with increasing concentrations of various salts in the nutrient solution. Resistance induced by proton stress also depended on the stress intensity. Resistance induction occurred even at low stress intensities. Any specific ion toxicity affecting the fungal growth directly, and therefore leading to enhanced pathogen resistance, can be excluded because of the independence of resistance induction of the ion used and of the time course of sodium accumulation in the leaves. BCI‐4, a marker for benzo[1,2,3]thiadiazolecarbothioic acid S‐methyl ester (BTH)‐induced resistance was not induced by these abiotic stresses. However, resistance was induced in the same concentration‐dependent manner by the application of the stress hormone ABA to the root medium. During the relief of water stress, resistance did not decrease constantly. On the contrary, after a phase of decreasing resistance for 24 h the pathogen resistance increased again for 48 h before decreasing finally to control levels. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Biology Wiley

Induction of Pathogen Resistance in Barley by Abiotic Stress

Plant Biology , Volume 6 (5) – Sep 1, 2004

Loading next page...
 
/lp/wiley/induction-of-pathogen-resistance-in-barley-by-abiotic-stress-a0wonrPTCz

References (37)

Publisher
Wiley
Copyright
Copyright © 2004 Wiley Subscription Services, Inc., A Wiley Company
ISSN
1435-8603
eISSN
1438-8677
DOI
10.1055/s-2004-821176
pmid
15375723
Publisher site
See Article on Publisher Site

Abstract

Abstract: Enhanced resistance of barley (Hordeum vulgare L. cv. Ingrid) against barley powdery mildew (Blumeria graminis f. sp. hordei race A6) was induced by abiotic stress in a concentration‐dependent manner. The papilla‐mediated resistance was not only induced by osmotic stress, but also by proton stress. Resistance was directly correlated with increasing concentrations of various salts in the nutrient solution. Resistance induced by proton stress also depended on the stress intensity. Resistance induction occurred even at low stress intensities. Any specific ion toxicity affecting the fungal growth directly, and therefore leading to enhanced pathogen resistance, can be excluded because of the independence of resistance induction of the ion used and of the time course of sodium accumulation in the leaves. BCI‐4, a marker for benzo[1,2,3]thiadiazolecarbothioic acid S‐methyl ester (BTH)‐induced resistance was not induced by these abiotic stresses. However, resistance was induced in the same concentration‐dependent manner by the application of the stress hormone ABA to the root medium. During the relief of water stress, resistance did not decrease constantly. On the contrary, after a phase of decreasing resistance for 24 h the pathogen resistance increased again for 48 h before decreasing finally to control levels.

Journal

Plant BiologyWiley

Published: Sep 1, 2004

Keywords: ; ; ; ; ;

There are no references for this article.