Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Wear mechanisms in metal‐on‐metal bearings: The importance of tribochemical reaction layers

Wear mechanisms in metal‐on‐metal bearings: The importance of tribochemical reaction layers Metal‐on‐metal (MoM) bearings are at the forefront in hip resurfacing arthroplasty. Because of their good wear characteristics and design flexibility, MoM bearings are gaining wider acceptance with market share reaching nearly 10% worldwide. However, concerns remain regarding potential detrimental effects of metal particulates and ion release. Growing evidence is emerging that the local cell response is related to the amount of debris generated by these bearing couples. Thus, an urgent clinical need exists to delineate the mechanisms of debris generation to further reduce wear and its adverse effects. In this study, we investigated the microstructural and chemical composition of the tribochemical reaction layers forming at the contacting surfaces of metallic bearings during sliding motion. Using X‐ray photoelectron spectroscopy and transmission electron microscopy with coupled energy dispersive X‐ray and electron energy loss spectroscopy, we found that the tribolayers are nanocrystalline in structure, and that they incorporate organic material stemming from the synovial fluid. This process, which has been termed “mechanical mixing,” changes the bearing surface of the uppermost 50 to 200 nm from pure metallic to an organic composite material. It hinders direct metal contact (thus preventing adhesion) and limits wear. This novel finding of a mechanically mixed zone of nanocrystalline metal and organic constituents provides the basis for understanding particle release and may help in identifying new strategies to reduce MoM wear. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:436–443, 2010 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Orthopaedic Research Wiley

Wear mechanisms in metal‐on‐metal bearings: The importance of tribochemical reaction layers

Loading next page...
 
/lp/wiley/wear-mechanisms-in-metal-on-metal-bearings-the-importance-of-XcnnsyLaRR

References (56)

Publisher
Wiley
Copyright
Copyright © 2009 Orthopaedic Research Society
ISSN
0736-0266
eISSN
1554-527X
DOI
10.1002/jor.21020
pmid
19877285
Publisher site
See Article on Publisher Site

Abstract

Metal‐on‐metal (MoM) bearings are at the forefront in hip resurfacing arthroplasty. Because of their good wear characteristics and design flexibility, MoM bearings are gaining wider acceptance with market share reaching nearly 10% worldwide. However, concerns remain regarding potential detrimental effects of metal particulates and ion release. Growing evidence is emerging that the local cell response is related to the amount of debris generated by these bearing couples. Thus, an urgent clinical need exists to delineate the mechanisms of debris generation to further reduce wear and its adverse effects. In this study, we investigated the microstructural and chemical composition of the tribochemical reaction layers forming at the contacting surfaces of metallic bearings during sliding motion. Using X‐ray photoelectron spectroscopy and transmission electron microscopy with coupled energy dispersive X‐ray and electron energy loss spectroscopy, we found that the tribolayers are nanocrystalline in structure, and that they incorporate organic material stemming from the synovial fluid. This process, which has been termed “mechanical mixing,” changes the bearing surface of the uppermost 50 to 200 nm from pure metallic to an organic composite material. It hinders direct metal contact (thus preventing adhesion) and limits wear. This novel finding of a mechanically mixed zone of nanocrystalline metal and organic constituents provides the basis for understanding particle release and may help in identifying new strategies to reduce MoM wear. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:436–443, 2010

Journal

Journal of Orthopaedic ResearchWiley

Published: Apr 1, 2010

There are no references for this article.