Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Identification, subcellular localization and biochemical characterization of water‐soluble heteroglycans (SHG) in leaves of Arabidopsis thaliana L.: distinct SHG reside in the cytosol and in the apoplast

Identification, subcellular localization and biochemical characterization of water‐soluble... Water‐soluble heteroglycans (SHG) were isolated from leaves of wild‐type Arabidopsis thaliana L. and from two starch‐deficient mutants. Major constituents of the SHG are arabinose, galactose, rhamnose, and glucose. SHG was separated into low (<10 kDa; SHGS) and high (>10 kDa; SHGL) molecular weight compounds. SHGS was resolved into approximately 25 distinct oligoglycans by ion exchange chromatography. SHGL was further separated into two subfractions, designated as subfraction I and II, by field flow fractionation. For the intracellular localization of the various SHG compounds several approaches were chosen: first, leaf material was subjected to non‐aqueous fractionation. The apolar gradient fractions were characterized by monitoring markers and were used as starting material for the SHG isolation. Subfraction I and SHGS exhibited a distribution similar to that of cytosolic markers whereas subfraction II cofractionated with crystalline cellulose. Secondly, intact organelles were isolated and used for SHG isolation. Preparations of intact organelles (mitochondria plus peroxisomes) contained no significant amount of any heteroglycan. In isolated intact microsomes a series of oligoglycans was recovered but neither subfraction I nor II. In in vitro assays using glucose 1‐phosphate and recombinant cytosolic (Pho 2) phosphorylase both SHGS and subfraction I acted as glucosyl acceptor whereas subfraction II was essentially inactive. Rabbit muscle phosphorylase a did not utilize any of the plant glycans indicating a specific Pho 2–glycan interaction. As revealed by in vivo labeling experiments using 14CO2 carbon fluxes into subfraction I and II differed. Furthermore, in leaves the pool size of subfraction I varied during the light–dark regime. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Plant Journal Wiley

Identification, subcellular localization and biochemical characterization of water‐soluble heteroglycans (SHG) in leaves of Arabidopsis thaliana L.: distinct SHG reside in the cytosol and in the apoplast

Loading next page...
 
/lp/wiley/identification-subcellular-localization-and-biochemical-XPDkAg6JfA

References (53)

Publisher
Wiley
Copyright
Copyright © 2005 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0960-7412
eISSN
1365-313X
DOI
10.1111/j.1365-313X.2005.02475.x
pmid
16098110
Publisher site
See Article on Publisher Site

Abstract

Water‐soluble heteroglycans (SHG) were isolated from leaves of wild‐type Arabidopsis thaliana L. and from two starch‐deficient mutants. Major constituents of the SHG are arabinose, galactose, rhamnose, and glucose. SHG was separated into low (<10 kDa; SHGS) and high (>10 kDa; SHGL) molecular weight compounds. SHGS was resolved into approximately 25 distinct oligoglycans by ion exchange chromatography. SHGL was further separated into two subfractions, designated as subfraction I and II, by field flow fractionation. For the intracellular localization of the various SHG compounds several approaches were chosen: first, leaf material was subjected to non‐aqueous fractionation. The apolar gradient fractions were characterized by monitoring markers and were used as starting material for the SHG isolation. Subfraction I and SHGS exhibited a distribution similar to that of cytosolic markers whereas subfraction II cofractionated with crystalline cellulose. Secondly, intact organelles were isolated and used for SHG isolation. Preparations of intact organelles (mitochondria plus peroxisomes) contained no significant amount of any heteroglycan. In isolated intact microsomes a series of oligoglycans was recovered but neither subfraction I nor II. In in vitro assays using glucose 1‐phosphate and recombinant cytosolic (Pho 2) phosphorylase both SHGS and subfraction I acted as glucosyl acceptor whereas subfraction II was essentially inactive. Rabbit muscle phosphorylase a did not utilize any of the plant glycans indicating a specific Pho 2–glycan interaction. As revealed by in vivo labeling experiments using 14CO2 carbon fluxes into subfraction I and II differed. Furthermore, in leaves the pool size of subfraction I varied during the light–dark regime.

Journal

The Plant JournalWiley

Published: Aug 1, 2005

Keywords: ; ; ; ; ;

There are no references for this article.