Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Isolation, characterization and molecular cloning of the mannose-binding lectins from leaves and roots of garlic (Allium sativum L.)

Isolation, characterization and molecular cloning of the mannose-binding lectins from leaves and... Two novel lectins were isolated from roots and leaves of garlic. Characterization of the purified proteins indicated that the leaf lectin ASAL is a dimer of two identical subunits of 12 kDa, which closely resembles the leaf lectins from onion, leek and shallot with respect to its molecular structure and agglutination activity. In contrast, the root lectin ASARI, which is a dimer of subunits of 15 kDa, strongly differs from the leaf lectin with respect to its agglutination activity. cDNA cloning of the leaf and root lectins revealed that the deduced amino acid sequences of ASAL and ASARI are virtually identical. Since both lectins have identical N-terminal sequences the larger Mr of the ASARI subunits implies that the root lectin has an extra sequence at its C-terminus. These results not only demonstrate that virtually identical precursor polypeptides are differently processed at their C-terminus in roots and leaves but also indicate that differential processing yields mature lectins with strongly different biological activities. Further screening of the cDNA library for garlic roots also yielded a cDNA clone encoding a protein composed of two tandemly arrayed lectin domains. Since the presumed two-domain root lectin has not been isolated yet, its possible relationship to the previously described two-domain bulb lectin could not be studied at the protein level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Isolation, characterization and molecular cloning of the mannose-binding lectins from leaves and roots of garlic (Allium sativum L.)

Loading next page...
 
/lp/springer-journals/isolation-characterization-and-molecular-cloning-of-the-mannose-XMY7teknEy

References (21)

Publisher
Springer Journals
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1023/A:1005717020021
Publisher site
See Article on Publisher Site

Abstract

Two novel lectins were isolated from roots and leaves of garlic. Characterization of the purified proteins indicated that the leaf lectin ASAL is a dimer of two identical subunits of 12 kDa, which closely resembles the leaf lectins from onion, leek and shallot with respect to its molecular structure and agglutination activity. In contrast, the root lectin ASARI, which is a dimer of subunits of 15 kDa, strongly differs from the leaf lectin with respect to its agglutination activity. cDNA cloning of the leaf and root lectins revealed that the deduced amino acid sequences of ASAL and ASARI are virtually identical. Since both lectins have identical N-terminal sequences the larger Mr of the ASARI subunits implies that the root lectin has an extra sequence at its C-terminus. These results not only demonstrate that virtually identical precursor polypeptides are differently processed at their C-terminus in roots and leaves but also indicate that differential processing yields mature lectins with strongly different biological activities. Further screening of the cDNA library for garlic roots also yielded a cDNA clone encoding a protein composed of two tandemly arrayed lectin domains. Since the presumed two-domain root lectin has not been isolated yet, its possible relationship to the previously described two-domain bulb lectin could not be studied at the protein level.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

There are no references for this article.