Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Leading indicators of trophic cascades

Leading indicators of trophic cascades Regime shifts are large, long‐lasting changes in ecosystems. They are often hard to predict but may have leading indicators which are detectable in advance. Potential leading indicators include wider swings in dynamics of key ecosystem variables, slower return rates after perturbation and shift of variance towards lower frequencies. We evaluated these indicators using a food web model calibrated to long‐term whole‐lake experiments. We investigated whether impending regime shifts driven by gradual increase in exploitation of the top predator can create signals that cascade through food webs and be discerned in phytoplankton. Substantial changes in standard deviations, return rates and spectra occurred near the switch point, even two trophic levels removed from the regime shift in fishes. Signals of regime shift can be detected well in advance, if the driver of the regime shift changes much more slowly than the dynamics of key ecosystem variables which can be sampled frequently enough to measure the indicators. However, the regime shift may occur long after the driver has passed the critical point, because of very slow transient dynamics near the critical point. Thus, the ecosystem can be poised for regime shift by the time the signal is discernible. Field tests are needed to evaluate these indicators. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecology Letters Wiley

Leading indicators of trophic cascades

Loading next page...
 
/lp/wiley/leading-indicators-of-trophic-cascades-X6BPG5wasA

References (55)

Publisher
Wiley
Copyright
Copyright © 2008 Wiley Subscription Services, Inc., A Wiley Company
ISSN
1461-023X
eISSN
1461-0248
DOI
10.1111/j.1461-0248.2007.01131.x
pmid
18021242
Publisher site
See Article on Publisher Site

Abstract

Regime shifts are large, long‐lasting changes in ecosystems. They are often hard to predict but may have leading indicators which are detectable in advance. Potential leading indicators include wider swings in dynamics of key ecosystem variables, slower return rates after perturbation and shift of variance towards lower frequencies. We evaluated these indicators using a food web model calibrated to long‐term whole‐lake experiments. We investigated whether impending regime shifts driven by gradual increase in exploitation of the top predator can create signals that cascade through food webs and be discerned in phytoplankton. Substantial changes in standard deviations, return rates and spectra occurred near the switch point, even two trophic levels removed from the regime shift in fishes. Signals of regime shift can be detected well in advance, if the driver of the regime shift changes much more slowly than the dynamics of key ecosystem variables which can be sampled frequently enough to measure the indicators. However, the regime shift may occur long after the driver has passed the critical point, because of very slow transient dynamics near the critical point. Thus, the ecosystem can be poised for regime shift by the time the signal is discernible. Field tests are needed to evaluate these indicators.

Journal

Ecology LettersWiley

Published: Feb 1, 2008

There are no references for this article.