Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Temporal frequency characteristics of synchrony–asynchrony discrimination of audio-visual signals

Temporal frequency characteristics of synchrony–asynchrony discrimination of audio-visual signals Temporal synchrony is a critical condition for integrating information presented in different sensory modalities. To gain insight into the mechanism underlying synchrony perception of audio-visual signals we examined temporal limits for human participants to detect synchronous audio-visual stimuli. Specifically, we measured the percentage correctness of synchrony–asynchrony discrimination as a function of audio-visual lag while changing the temporal frequency and/or modulation waveforms. Audio-visual stimuli were a luminance-modulated Gaussian blob and amplitude-modulated white noise. The results indicated that synchrony–asynchrony discrimination became nearly impossible for periodic pulse trains at temporal frequencies higher than 4 Hz, even when the lag was large enough for discrimination with single pulses (Experiment 1). This temporal limitation cannot be ascribed to peripheral low-pass filters in either vision or audition (Experiment 2), which suggests that the temporal limit reflects a property of a more central mechanism located at or before cross-modal signal comparison. We also found that the functional behaviour of this central mechanism could not be approximated by a linear low-pass filter (Experiment 3). These results are consistent with a hypothesis that the perception of audio-visual synchrony is based on comparison of salient temporal features individuated from within-modal signal streams. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Brain Research Springer Journals

Temporal frequency characteristics of synchrony–asynchrony discrimination of audio-visual signals

Loading next page...
 
/lp/springer-journals/temporal-frequency-characteristics-of-synchrony-asynchrony-W75G74zxpU

References (38)

Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer-Verlag
Subject
LifeSciences
ISSN
0014-4819
eISSN
1432-1106
DOI
10.1007/s00221-005-2385-8
pmid
16032402
Publisher site
See Article on Publisher Site

Abstract

Temporal synchrony is a critical condition for integrating information presented in different sensory modalities. To gain insight into the mechanism underlying synchrony perception of audio-visual signals we examined temporal limits for human participants to detect synchronous audio-visual stimuli. Specifically, we measured the percentage correctness of synchrony–asynchrony discrimination as a function of audio-visual lag while changing the temporal frequency and/or modulation waveforms. Audio-visual stimuli were a luminance-modulated Gaussian blob and amplitude-modulated white noise. The results indicated that synchrony–asynchrony discrimination became nearly impossible for periodic pulse trains at temporal frequencies higher than 4 Hz, even when the lag was large enough for discrimination with single pulses (Experiment 1). This temporal limitation cannot be ascribed to peripheral low-pass filters in either vision or audition (Experiment 2), which suggests that the temporal limit reflects a property of a more central mechanism located at or before cross-modal signal comparison. We also found that the functional behaviour of this central mechanism could not be approximated by a linear low-pass filter (Experiment 3). These results are consistent with a hypothesis that the perception of audio-visual synchrony is based on comparison of salient temporal features individuated from within-modal signal streams.

Journal

Experimental Brain ResearchSpringer Journals

Published: Oct 1, 2005

There are no references for this article.