Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A mitochondrial specific stress response in mammalian cells

A mitochondrial specific stress response in mammalian cells Cells respond to a wide variety of stresses through the transcriptional activation of genes that harbour stress elements within their promoters. While many of these elements are shared by genes encoding proteins representative of all subcellular compartments, cells can also respond to stresses that are specific to individual organelles, such as the endoplasmic reticulum un folded protein response. Here we report on the discovery and characterization of a mitochondrial stress response in mammalian cells. We find that the accumulation of unfolded protein within the mitochondrial matrix results in the transcriptional upregulation of nuclear genes encoding mitochondrial stress proteins such as chaperonin 60, chaperonin 10, mtDnaJ and ClpP, but not those encoding stress proteins of the endoplasmic reticulum. Analysis of the chaperonin 60/10 bidirectional promoter identified a CHOP element as the mitochondrial stress response element. Dominant‐negative mutant forms of CHOP and overexpression of CHOP revealed that this transcription factor, in association with C/EBPβ, regulates expression of mitochondrial stress genes in response to the accumulation of unfolded proteins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The EMBO Journal Wiley

Loading next page...
 
/lp/wiley/a-mitochondrial-specific-stress-response-in-mammalian-cells-UD0J0kcCEm

References (55)

Publisher
Wiley
Copyright
Copyright © 2013 Wiley Periodicals, Inc
ISSN
0261-4189
eISSN
1460-2075
DOI
10.1093/emboj/cdf445
Publisher site
See Article on Publisher Site

Abstract

Cells respond to a wide variety of stresses through the transcriptional activation of genes that harbour stress elements within their promoters. While many of these elements are shared by genes encoding proteins representative of all subcellular compartments, cells can also respond to stresses that are specific to individual organelles, such as the endoplasmic reticulum un folded protein response. Here we report on the discovery and characterization of a mitochondrial stress response in mammalian cells. We find that the accumulation of unfolded protein within the mitochondrial matrix results in the transcriptional upregulation of nuclear genes encoding mitochondrial stress proteins such as chaperonin 60, chaperonin 10, mtDnaJ and ClpP, but not those encoding stress proteins of the endoplasmic reticulum. Analysis of the chaperonin 60/10 bidirectional promoter identified a CHOP element as the mitochondrial stress response element. Dominant‐negative mutant forms of CHOP and overexpression of CHOP revealed that this transcription factor, in association with C/EBPβ, regulates expression of mitochondrial stress genes in response to the accumulation of unfolded proteins.

Journal

The EMBO JournalWiley

Published: Feb 2, 2002

Keywords: ; ; ;

There are no references for this article.