Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Allopolyploidy alters gene expression in the highly stable hexaploid wheat

Allopolyploidy alters gene expression in the highly stable hexaploid wheat Hexaploid wheat (Triticum aestivum) contains triplicated genomes derived from three distinct species. To better understand how different genomes are coordinated in the same nucleus of the hexaploid wheat, we globally compared gene expression of a synthetic hexaploid wheat with its diploid (Aegilops tauschii) and tetraploid (T. turgidum) parents by cDNA-AFLP display. The results suggested that the expression of a significant fraction of genes was altered in the synthetic hexaploid; most appeared to be diminished and some were activated. We characterized nine cDNA clones in details. Cytogenetic as well as genomic sequence analyses indicated that the gene silencing was not due to chromosome/DNA loss but was caused by gene regulation. Northern and RT-PCR divided these genes into three groups: (I) four genes were down-regulated nonspecifically, likely involving both parental orthologues; (II) four genes were down-regulated in an orthologue-dependent manner; (III) one gene was activated specifically in the synthetic hexaploid wheat. These genes were often altered non-randomly in different synthetic hexaploids as well as natural hexaploid wheat, suggesting that many of the gene expression changes were intrinsically associated with polyploidy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Allopolyploidy alters gene expression in the highly stable hexaploid wheat

Loading next page...
 
/lp/springer-journals/allopolyploidy-alters-gene-expression-in-the-highly-stable-hexaploid-T8sHemFbQx

References (42)

Publisher
Springer Journals
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1023/A:1023965400532
Publisher site
See Article on Publisher Site

Abstract

Hexaploid wheat (Triticum aestivum) contains triplicated genomes derived from three distinct species. To better understand how different genomes are coordinated in the same nucleus of the hexaploid wheat, we globally compared gene expression of a synthetic hexaploid wheat with its diploid (Aegilops tauschii) and tetraploid (T. turgidum) parents by cDNA-AFLP display. The results suggested that the expression of a significant fraction of genes was altered in the synthetic hexaploid; most appeared to be diminished and some were activated. We characterized nine cDNA clones in details. Cytogenetic as well as genomic sequence analyses indicated that the gene silencing was not due to chromosome/DNA loss but was caused by gene regulation. Northern and RT-PCR divided these genes into three groups: (I) four genes were down-regulated nonspecifically, likely involving both parental orthologues; (II) four genes were down-regulated in an orthologue-dependent manner; (III) one gene was activated specifically in the synthetic hexaploid wheat. These genes were often altered non-randomly in different synthetic hexaploids as well as natural hexaploid wheat, suggesting that many of the gene expression changes were intrinsically associated with polyploidy.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2004

There are no references for this article.