Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Validity of Ellenberg indicator values judged from physico‐chemical field measurements

Validity of Ellenberg indicator values judged from physico‐chemical field measurements Abstract. The relationship between mean Ellenberg indicator values (IV) per vegetation relevé and environmental parameters measured in the field usually shows a large variation. We tested the hypothesis that this variation is caused by bias dependent on the phytosociological class. For this purpose we collected data containing vegetation relevés and measured soil pH (3631 records) or mean spring groundwater level (MSL, 1600 records). The relevés were assigned to vegetation types by an automated procedure. Regression of the mean indicator values for acidity on soil pH and the mean indicator values for moisture on MSL gave percentages explained variance similar to values that were reported earlier in literature. When the phytosociological class was added as an explanatory factor the explained variance increased considerably. Regression lines per vegetation type were estimated, many of which were significantly different from each other. In most cases the intercepts were different, but in some cases their slopes differed as well. The results show that Ellenberg indicator values for acidity and moisture appear to be biased towards the values that experts expect for the various phytosociological classes. On the basis of the results, we advise to use Ellenberg IVs only for comparison within the same vegetation type. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Vegetation Science Wiley

Validity of Ellenberg indicator values judged from physico‐chemical field measurements

Loading next page...
 
/lp/wiley/validity-of-ellenberg-indicator-values-judged-from-physico-chemical-Sl4BfTbLuK

References (20)

Publisher
Wiley
Copyright
2002 IAVS ‐ the International Association of Vegetation Science
ISSN
1100-9233
eISSN
1654-1103
DOI
10.1111/j.1654-1103.2002.tb02047.x
Publisher site
See Article on Publisher Site

Abstract

Abstract. The relationship between mean Ellenberg indicator values (IV) per vegetation relevé and environmental parameters measured in the field usually shows a large variation. We tested the hypothesis that this variation is caused by bias dependent on the phytosociological class. For this purpose we collected data containing vegetation relevés and measured soil pH (3631 records) or mean spring groundwater level (MSL, 1600 records). The relevés were assigned to vegetation types by an automated procedure. Regression of the mean indicator values for acidity on soil pH and the mean indicator values for moisture on MSL gave percentages explained variance similar to values that were reported earlier in literature. When the phytosociological class was added as an explanatory factor the explained variance increased considerably. Regression lines per vegetation type were estimated, many of which were significantly different from each other. In most cases the intercepts were different, but in some cases their slopes differed as well. The results show that Ellenberg indicator values for acidity and moisture appear to be biased towards the values that experts expect for the various phytosociological classes. On the basis of the results, we advise to use Ellenberg IVs only for comparison within the same vegetation type.

Journal

Journal of Vegetation ScienceWiley

Published: Apr 1, 2002

There are no references for this article.