Access the full text.
Sign up today, get DeepDyve free for 14 days.
Cornelis Niekerk, J. Witjes, J. Barentsz, J. Laak, C. Kaa (2013)
Microvascularity in transition zone prostate tumors resembles normal prostatic tissueThe Prostate, 73
P. Puech, O. Rouvière, R. Renard-Penna, A. Villers, P. Devos, M. Colombel, M. Bitker, X. Leroy, F. Mege-Lechevallier, E. Compérat, A. Ouzzane, L. Lemaitre (2013)
Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US-MR fusion guidance versus systematic biopsy--prospective multicenter study.Radiology, 268 2
T. Franiel, C. Stephan, A. Erbersdobler, Ekkehart Dietz, A. Maxeiner, Nina Hell, A. Huppertz, K. Miller, Ralph Strecker, Bernd Hamm (2011)
Areas suspicious for prostate cancer: MR-guided biopsy in patients with at least one transrectal US-guided biopsy with a negative finding--multiparametric MR imaging for detection and biopsy planning.Radiology, 259 1
Haas (1997)
Epidemiology of prostate cancerCA Cancer J Clin, 47
Meijuan Yang, Xuelong Li, B. Turkbey, P. Choyke, Pingkun Yan (2013)
Prostate Segmentation in MR Images Using Discriminant Boundary FeaturesIEEE Transactions on Biomedical Engineering, 60
N. Girouin, F. Mege-Lechevallier, Alejandro Senes, A. Bissery, M. Rabilloud, J. Maréchal, M. Colombel, D. Lyonnet, O. Rouvière (2007)
Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable?European Radiology, 17
A. Oto, A. Kayhan, Yulei Jiang, M. Tretiakova, Cheng Yang, T. Antic, F. Dahi, A. Shalhav, G. Karczmar, W. Stadler (2010)
Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging.Radiology, 257 3
Emilie Niaf, O. Rouvière, F. Mege-Lechevallier, F. Bratan, C. Lartizien (2012)
Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRIPhysics in Medicine and Biology, 57
C. Hoeks, T. Hambrock, Derya Yakar, C. Kaa, T. Feuth, J. Witjes, J. Fütterer, J. Barentsz (2013)
Transition zone prostate cancer: detection and localization with 3-T multiparametric MR imaging.Radiology, 266 1
T. Hambrock, P. Vos, C. Kaa, J. Barentsz, H. Huisman (2013)
Prostate cancer: computer-aided diagnosis with multiparametric 3-T MR imaging--effect on observer performance.Radiology, 266 2
O. Akin, E. Sala, C. Moskowitz, K. Kuroiwa, N. Ishill, D. Pucar, P. Scardino, H. Hricak (2006)
Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging.Radiology, 239 3
G. Litjens, J. Barentsz, N. Karssemeijer, H. Huisman (2012)
Automated computer-aided detection of prostate cancer in MR images: from a whole-organ to a zone-based approach, 8315
S. Viswanath, N. Bloch, J. Chappelow, R. Toth, N. Rofsky, E. Genega, R. Lenkinski, A. Madabhushi (2012)
Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 tesla endorectal, in vivo T2‐weighted MR imageryJournal of Magnetic Resonance Imaging, 36
R. Alonzi, A. Padhani, C. Allen (2007)
Dynamic contrast enhanced MRI in prostate cancer.European journal of radiology, 63 3
R. Haralick, K. Shanmugam, I. Dinstein (1973)
Textural Features for Image ClassificationIEEE Trans. Syst. Man Cybern., 3
A. Padhani, C. Gapinski, D. Macvicar, GEOFFREY Parker, J. Suckling, P. Revell, M. Leach, D. Dearnaley, J. Husband (2000)
Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA.Clinical radiology, 55 2
A. Kayhan, Xiaobing Fan, Jacob Oommen, A. Oto (2010)
Multi-parametric MR imaging of transition zone prostate cancer: Imaging features, detection and staging.World journal of radiology, 2 5
N. Lawrentschuk, M. Haider, Nikhil Daljeet, A. Evans, A. Toi, A. Finelli, J. Trachtenberg, A. Zlotta, N. Fleshner (2010)
‘Prostatic evasive anterior tumours’: the role of magnetic resonance imagingBJU International, 105
D. Langer, T. Kwast, A. Evans, J. Trachtenberg, B. Wilson, M. Haider (2009)
Prostate cancer detection with multi‐parametric MRI: Logistic regression analysis of quantitative T2, diffusion‐weighted imaging, and dynamic contrast‐enhanced MRIJournal of Magnetic Resonance Imaging, 30
S. Ceri, A. Bozzon, Marco Brambilla, Emanuele Valle, P. Fraternali, S. Quarteroni (2013)
An Introduction to Information Retrieval
Litjens (2012)
Automated computer-aided detection of prostate cancer in MR images: from a whole-organ to a zone-based approach. Medical imaging 2012: computer-aided diagnosisProc SPIE, 8315
Journal of Magnetic Resonance Imaging – Wiley
Published: Aug 1, 2014
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.