Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Laser rangefinder-based measuring of crop biomass under field conditions

Laser rangefinder-based measuring of crop biomass under field conditions Knowledge of site-specific crop parameters such as plant height, coverage and biomass density is important for optimising crop management and harvesting processes. Sensors for measuring crop parameters are essential pre-requisites to gather this information. In recent years, laser rangefinder sensors have been adopted in many industrial applications. In agricultural engineering, the potential of laser rangefinders for measuring crop parameters has been little exploited. This paper reports the design and the performance of a measuring system based on a triangulation and a time-of-flight laser rangefinder for estimating crop biomass density in representative crops under field conditions. It was shown that the mean height of reflection point is a suitable parameter for non-contact indirect measurement of crop biomass by laser rangefinder sensors. The main parameters for potential assessment were the coefficient of determination (R 2 ) and the standard error (RMSE) for the relation between crop biomass density and the mean height of the reflection point in crop stands from oilseed rape, winter rye, winter wheat and grassland during the vegetation period in 2006. For the triangulation sensor, R 2 was in the range from 0.87 to 0.98 and for the time-of-flight sensor in the range from 0.75 to 0.99 for both fresh matter and dry matter density. The triangulation sensor had a reduced suitability caused by masking effects of the reflected beam and because of limited measuring range. Based on the results of experiments and technical data, it was concluded that the time-of-flight principle has good potential for site-specific crop management. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Laser rangefinder-based measuring of crop biomass under field conditions

Loading next page...
 
/lp/springer-journals/laser-rangefinder-based-measuring-of-crop-biomass-under-field-QYunG0GzXg

References (21)

Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
DOI
10.1007/s11119-009-9114-4
Publisher site
See Article on Publisher Site

Abstract

Knowledge of site-specific crop parameters such as plant height, coverage and biomass density is important for optimising crop management and harvesting processes. Sensors for measuring crop parameters are essential pre-requisites to gather this information. In recent years, laser rangefinder sensors have been adopted in many industrial applications. In agricultural engineering, the potential of laser rangefinders for measuring crop parameters has been little exploited. This paper reports the design and the performance of a measuring system based on a triangulation and a time-of-flight laser rangefinder for estimating crop biomass density in representative crops under field conditions. It was shown that the mean height of reflection point is a suitable parameter for non-contact indirect measurement of crop biomass by laser rangefinder sensors. The main parameters for potential assessment were the coefficient of determination (R 2 ) and the standard error (RMSE) for the relation between crop biomass density and the mean height of the reflection point in crop stands from oilseed rape, winter rye, winter wheat and grassland during the vegetation period in 2006. For the triangulation sensor, R 2 was in the range from 0.87 to 0.98 and for the time-of-flight sensor in the range from 0.75 to 0.99 for both fresh matter and dry matter density. The triangulation sensor had a reduced suitability caused by masking effects of the reflected beam and because of limited measuring range. Based on the results of experiments and technical data, it was concluded that the time-of-flight principle has good potential for site-specific crop management.

Journal

Precision AgricultureSpringer Journals

Published: Mar 26, 2009

There are no references for this article.