Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests

Influence of spring phenology on seasonal and annual carbon balance in two contrasting New... Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface–atmosphere CO2 exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux sites. All phenological measures, including CO2 source–sink transition dates, could be well predicted on the basis of a simple two-parameter spring warming model, indicating good potential for improving the representation of phenological transitions and their dynamic responsiveness to climate variability in land surface models. The date at which canopy-scale photosynthetic capacity reached a threshold value of 12 μmol m−2 s−1 was better correlated with spring and annual flux integrals than were either deciduous or coniferous bud burst dates. For all phenological indicators, earlier spring onset consistently, but not always significantly, resulted in higher gross primary productivity (GPP) and ecosystem respiration (RE) for both seasonal (spring months, April–June) and annual flux integrals. The increase in RE was less than that in GPP; depending on the phenological indicator used, a one-day advance in spring onset increased springtime net ecosystem productivity (NEP) by 2–4 g C m−2 day−1. In general, we could not detect significant differences between the two forest types in response to earlier spring, although the response to earlier spring was generally more pronounced for Harvard Forest than for Howland Forest, suggesting that future climate warming may favor deciduous species over coniferous species, at least in this region. The effect of earlier spring tended to be about twice as large when annual rather than springtime flux integrals were considered. This result is suggestive of both immediate and lagged effects of earlier spring onset on ecosystem C cycling, perhaps as a result of accelerated N cycling rates and cascading effects on N uptake, foliar N concentrations and photosynthetic capacity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tree Physiology Oxford University Press

Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests

Loading next page...
 
/lp/oxford-university-press/influence-of-spring-phenology-on-seasonal-and-annual-carbon-balance-in-QTL6bbhkD0

References (52)

Publisher
Oxford University Press
Copyright
© The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
Subject
Article
ISSN
0829-318X
eISSN
1758-4469
DOI
10.1093/treephys/tpn040
pmid
19203967
Publisher site
See Article on Publisher Site

Abstract

Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface–atmosphere CO2 exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux sites. All phenological measures, including CO2 source–sink transition dates, could be well predicted on the basis of a simple two-parameter spring warming model, indicating good potential for improving the representation of phenological transitions and their dynamic responsiveness to climate variability in land surface models. The date at which canopy-scale photosynthetic capacity reached a threshold value of 12 μmol m−2 s−1 was better correlated with spring and annual flux integrals than were either deciduous or coniferous bud burst dates. For all phenological indicators, earlier spring onset consistently, but not always significantly, resulted in higher gross primary productivity (GPP) and ecosystem respiration (RE) for both seasonal (spring months, April–June) and annual flux integrals. The increase in RE was less than that in GPP; depending on the phenological indicator used, a one-day advance in spring onset increased springtime net ecosystem productivity (NEP) by 2–4 g C m−2 day−1. In general, we could not detect significant differences between the two forest types in response to earlier spring, although the response to earlier spring was generally more pronounced for Harvard Forest than for Howland Forest, suggesting that future climate warming may favor deciduous species over coniferous species, at least in this region. The effect of earlier spring tended to be about twice as large when annual rather than springtime flux integrals were considered. This result is suggestive of both immediate and lagged effects of earlier spring onset on ecosystem C cycling, perhaps as a result of accelerated N cycling rates and cascading effects on N uptake, foliar N concentrations and photosynthetic capacity.

Journal

Tree PhysiologyOxford University Press

Published: Mar 1, 2009

Keywords: AmeriFlux bud burst carbon dioxide eddy covariance growing season length phenology spring onset start of spring

There are no references for this article.