Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The plant beneficial effects of Metarhizium species correlate with their association with roots

The plant beneficial effects of Metarhizium species correlate with their association with roots Metarhizium species have recently been found to be plant rhizosphere associates as well as insect pathogens. Because of their abundance, rhizospheric Metarhizium could have enormous environmental impact, with co-evolutionary implications. Here, we tested the hypothesis that some Metarhizium spp. are multifactorial plant growth promoters. In two consecutive years, corn seeds were treated with entomopathogenic Metarhizium spp. and field tested at the Beltsville Facility in Maryland. Seed treatments included application of green fluorescent protein (GFP)-tagged strains of Metarhizium brunneum, Metarhizium anisopliae, Metarhizium robertsii, and M. robertsii gene disruption mutants that were either avirulent (Δmcl1), unable to adhere to plant roots (Δmad2), or poorly utilized root exudates (Δmrt). Relative to seeds treated with heat-killed conidia, M. brunneum, M. anisopliae, and M. robertsii significantly increased leaf collar formation (by 15, 14, and 13 %), stalk length (by 16, 10, and 10 %), average ear biomass (by 61, 56, and 36 %), and average stalk and foliage biomass (by 46, 36, and 33 %). Their major impact on corn yield was during early vegetative growth by allowing the plants to establish earlier and thereby potentially outpacing ambient biotic and abiotic stressors. Δmcl1 colonized roots and promoted plant growth to a similar extent as the parent wild type, showing that Metarhizium populations are plant growth promoters irrespective of their role as insect pathogens. In contrast, rhizospheric populations and growth promotion by Δmrt were significantly reduced, and Δmad2 failed to colonize roots or impact plant growth, suggesting that colonization of the root is a prerequisite for most, if not all, of the beneficial effects of Metarhizium. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

The plant beneficial effects of Metarhizium species correlate with their association with roots

Loading next page...
 
/lp/springer-journals/the-plant-beneficial-effects-of-metarhizium-species-correlate-with-QHD6EYJktg

References (40)

Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
ISSN
0175-7598
eISSN
1432-0614
DOI
10.1007/s00253-014-5788-2
pmid
24805846
Publisher site
See Article on Publisher Site

Abstract

Metarhizium species have recently been found to be plant rhizosphere associates as well as insect pathogens. Because of their abundance, rhizospheric Metarhizium could have enormous environmental impact, with co-evolutionary implications. Here, we tested the hypothesis that some Metarhizium spp. are multifactorial plant growth promoters. In two consecutive years, corn seeds were treated with entomopathogenic Metarhizium spp. and field tested at the Beltsville Facility in Maryland. Seed treatments included application of green fluorescent protein (GFP)-tagged strains of Metarhizium brunneum, Metarhizium anisopliae, Metarhizium robertsii, and M. robertsii gene disruption mutants that were either avirulent (Δmcl1), unable to adhere to plant roots (Δmad2), or poorly utilized root exudates (Δmrt). Relative to seeds treated with heat-killed conidia, M. brunneum, M. anisopliae, and M. robertsii significantly increased leaf collar formation (by 15, 14, and 13 %), stalk length (by 16, 10, and 10 %), average ear biomass (by 61, 56, and 36 %), and average stalk and foliage biomass (by 46, 36, and 33 %). Their major impact on corn yield was during early vegetative growth by allowing the plants to establish earlier and thereby potentially outpacing ambient biotic and abiotic stressors. Δmcl1 colonized roots and promoted plant growth to a similar extent as the parent wild type, showing that Metarhizium populations are plant growth promoters irrespective of their role as insect pathogens. In contrast, rhizospheric populations and growth promotion by Δmrt were significantly reduced, and Δmad2 failed to colonize roots or impact plant growth, suggesting that colonization of the root is a prerequisite for most, if not all, of the beneficial effects of Metarhizium.

Journal

Applied Microbiology and BiotechnologySpringer Journals

Published: May 8, 2014

There are no references for this article.