Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Oligomerization states of the association domain and the holoenyzme of Ca 2+ /CaM kinase II

Oligomerization states of the association domain and the holoenyzme of Ca 2+ /CaM kinase II Ca2+/calmodulin activated protein kinase II (CaMKII) is an oligomeric protein kinase with a unique holoenyzme architecture. The subunits of CaMKII are bound together into the holoenzyme by the association domain, a C‐terminal region of ≈ 140 residues in the CaMKII polypeptide. Single particle analyses of electron micrographs have suggested previously that the holoenyzme forms a dodecamer that contains two stacked 6‐fold symmetric rings. In contrast, a recent crystal structure of the isolated association domain of mouse CaMKIIα has revealed a tetradecameric assembly with two stacked 7‐fold symmetric rings. In this study, we have determined the crystal structure of the Caenorhabditis elegans CaMKII association domain and it too forms a tetradecamer. We also show by electron microscopy that in its fully assembled form the CaMKII holoenzyme is a dodecamer but without the kinase domains, either from expression of the isolated association domain in bacteria or following their removal by proteolysis, the association domains form a tetradecamer. We speculate that the holoenzyme is held in its 6‐fold symmetric state by the interactions of the N‐terminal ≈ 1–335 residues and that the removal of this region allows the association domain to convert into a more stable 7‐fold symmetric form. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Febs Journal Wiley

Oligomerization states of the association domain and the holoenyzme of Ca 2+ /CaM kinase II

Loading next page...
 
/lp/wiley/oligomerization-states-of-the-association-domain-and-the-holoenyzme-of-PVGav95YPn

References (47)

Publisher
Wiley
Copyright
Copyright © 2006 Wiley Subscription Services, Inc., A Wiley Company
ISSN
1742-464X
eISSN
1742-4658
DOI
10.1111/j.1742-4658.2005.05088.x
pmid
16441656
Publisher site
See Article on Publisher Site

Abstract

Ca2+/calmodulin activated protein kinase II (CaMKII) is an oligomeric protein kinase with a unique holoenyzme architecture. The subunits of CaMKII are bound together into the holoenzyme by the association domain, a C‐terminal region of ≈ 140 residues in the CaMKII polypeptide. Single particle analyses of electron micrographs have suggested previously that the holoenyzme forms a dodecamer that contains two stacked 6‐fold symmetric rings. In contrast, a recent crystal structure of the isolated association domain of mouse CaMKIIα has revealed a tetradecameric assembly with two stacked 7‐fold symmetric rings. In this study, we have determined the crystal structure of the Caenorhabditis elegans CaMKII association domain and it too forms a tetradecamer. We also show by electron microscopy that in its fully assembled form the CaMKII holoenzyme is a dodecamer but without the kinase domains, either from expression of the isolated association domain in bacteria or following their removal by proteolysis, the association domains form a tetradecamer. We speculate that the holoenzyme is held in its 6‐fold symmetric state by the interactions of the N‐terminal ≈ 1–335 residues and that the removal of this region allows the association domain to convert into a more stable 7‐fold symmetric form.

Journal

Febs JournalWiley

Published: Feb 1, 2006

There are no references for this article.