Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Ultrastructure of Reichert's membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac.

Ultrastructure of Reichert's membrane, a multilayered basement membrane in the parietal wall of... The ultrastructure of Reichert's membrane, a thick basement membrane in the parietal wall of the yolk sac, has been examined in 13-14-d pregnant rats. This membrane is composed of more or less distinct parallel layers, each one of which resembles a common basement membrane. After routine fixation in glutaraldehyde followed by osmium tetroxide, the layers appear to be mainly composed of 3-8-nm thick cords arranged in a three-dimensional network. Loosely scattered among the cords are unbranched, straight tubular structures with a diameter of 7-10 nm, which mainly run parallel to the surface and to one another; they are referred to as basotubules. Permanganate fixation emphasizes the presence of a thick feltwork of irregular material around basotubules. Finally, minute dot-like structures measuring 3.5 nm and referred to as double pegs are present within the meshes of the cord network. Reichert's membranes have been treated for 2-48 h at 25 degrees C with plasmin, a proteolytic enzyme known to rapidly digest laminin and fibronectin. After a 2-h treatment, most of the substance of the cords is digested away leaving a three-dimensional network of 1.5-2.0-nm thick filaments. The interpretation is that the cords are formed of a plasmin-resistant core filament and a plasmin-extractable sheath. When plasmin treatment is prolonged for 15 h or longer, the filaments are dissociated and disappear, while basotubules are maintained. Plasmin digestion also reveals that basotubules are composed of two parts: a ribbon-like helical wrapping and tubule proper. Further changes in the tubule under plasmin influence are interpreted as a dissociation into pentagonal units suggestive of the presence of the amyloid P component. After 48 h of plasmin treatment, basotubules are further disaggregated and dispersed, leaving only linearly arranged double pegs. Reichert's membranes with or without a 2-hr plasmin treatment have been immunostained by exposure to antibodies against either laminin or type IV collagen with the help of peroxidase markers. The results indicate that the sheath of the cords contains laminin antigenicity, while the core filament contains type IV collagen antigenicity. It is proposed that Reichert's membrane consists mainly of a three-dimensional network of cords composed of a type IV collagen filament enclosed within a laminin-containing sheath. Also present are basotubules--which may contain the amyloid P component--and double pegs whose nature is unknown. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Cell Biology Rockefeller University Press

Ultrastructure of Reichert's membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac.

The Journal of Cell Biology , Volume 97 (5): 1524 – Nov 1, 1983

Loading next page...
 
/lp/rockefeller-university-press/ultrastructure-of-reichert-s-membrane-a-multilayered-basement-membrane-PN8GIEHGuD

References (41)

Publisher
Rockefeller University Press
Copyright
© 1983 Rockefeller University Press
ISSN
0021-9525
eISSN
1540-8140
DOI
10.1083/jcb.97.5.1524
Publisher site
See Article on Publisher Site

Abstract

The ultrastructure of Reichert's membrane, a thick basement membrane in the parietal wall of the yolk sac, has been examined in 13-14-d pregnant rats. This membrane is composed of more or less distinct parallel layers, each one of which resembles a common basement membrane. After routine fixation in glutaraldehyde followed by osmium tetroxide, the layers appear to be mainly composed of 3-8-nm thick cords arranged in a three-dimensional network. Loosely scattered among the cords are unbranched, straight tubular structures with a diameter of 7-10 nm, which mainly run parallel to the surface and to one another; they are referred to as basotubules. Permanganate fixation emphasizes the presence of a thick feltwork of irregular material around basotubules. Finally, minute dot-like structures measuring 3.5 nm and referred to as double pegs are present within the meshes of the cord network. Reichert's membranes have been treated for 2-48 h at 25 degrees C with plasmin, a proteolytic enzyme known to rapidly digest laminin and fibronectin. After a 2-h treatment, most of the substance of the cords is digested away leaving a three-dimensional network of 1.5-2.0-nm thick filaments. The interpretation is that the cords are formed of a plasmin-resistant core filament and a plasmin-extractable sheath. When plasmin treatment is prolonged for 15 h or longer, the filaments are dissociated and disappear, while basotubules are maintained. Plasmin digestion also reveals that basotubules are composed of two parts: a ribbon-like helical wrapping and tubule proper. Further changes in the tubule under plasmin influence are interpreted as a dissociation into pentagonal units suggestive of the presence of the amyloid P component. After 48 h of plasmin treatment, basotubules are further disaggregated and dispersed, leaving only linearly arranged double pegs. Reichert's membranes with or without a 2-hr plasmin treatment have been immunostained by exposure to antibodies against either laminin or type IV collagen with the help of peroxidase markers. The results indicate that the sheath of the cords contains laminin antigenicity, while the core filament contains type IV collagen antigenicity. It is proposed that Reichert's membrane consists mainly of a three-dimensional network of cords composed of a type IV collagen filament enclosed within a laminin-containing sheath. Also present are basotubules--which may contain the amyloid P component--and double pegs whose nature is unknown.

Journal

The Journal of Cell BiologyRockefeller University Press

Published: Nov 1, 1983

There are no references for this article.