Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath

OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin... Calcium-dependent protein kinases (CDPKs) play an important role in rice signal transduction, but the precise role of each individual CDPK is still largely unknown. Recently, a full-length cDNA encoding OsCDPK13 from rice seedling was isolated. To characterize the function of OsCDPK13, its responses to various stresses and hormones were analyzed in this study. OsCDPK13 accumulated in 2-week-old leaf sheath and callus, and became phosphorylated in response to cold and gibberellin (GA). OsCDPK13 gene expression and protein accumulation were up-regulated in response to GA3 treatment, but suppressed in response to abscisic acid and brassinolide. Antisense OsCDPK13 transgenic rice lines were shorter than the vector control lines, and the expression of OsCDPK13 was lower in dwarf mutants of rice than in wild type. Furthermore, OsCDPK13 gene expression and protein accumulation were enhanced in response to cold, but suppressed under salt and drought stresses. Sense OsCDPK13 transgenic rice lines had higher recovery rates after cold stress than vector control rice. The expression of OsCDPK13 was stronger in cold-tolerant rice varieties than in cold-sensitive ones. The results suggest that OsCDPK13 might be an important signaling component in the response of rice to GA and cold stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath

Loading next page...
 
/lp/springer-journals/oscdpk13-a-calcium-dependent-protein-kinase-gene-from-rice-is-induced-KgzNQp9U0X

References (48)

Publisher
Springer Journals
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1007/s11103-004-1178-y
pmid
15604699
Publisher site
See Article on Publisher Site

Abstract

Calcium-dependent protein kinases (CDPKs) play an important role in rice signal transduction, but the precise role of each individual CDPK is still largely unknown. Recently, a full-length cDNA encoding OsCDPK13 from rice seedling was isolated. To characterize the function of OsCDPK13, its responses to various stresses and hormones were analyzed in this study. OsCDPK13 accumulated in 2-week-old leaf sheath and callus, and became phosphorylated in response to cold and gibberellin (GA). OsCDPK13 gene expression and protein accumulation were up-regulated in response to GA3 treatment, but suppressed in response to abscisic acid and brassinolide. Antisense OsCDPK13 transgenic rice lines were shorter than the vector control lines, and the expression of OsCDPK13 was lower in dwarf mutants of rice than in wild type. Furthermore, OsCDPK13 gene expression and protein accumulation were enhanced in response to cold, but suppressed under salt and drought stresses. Sense OsCDPK13 transgenic rice lines had higher recovery rates after cold stress than vector control rice. The expression of OsCDPK13 was stronger in cold-tolerant rice varieties than in cold-sensitive ones. The results suggest that OsCDPK13 might be an important signaling component in the response of rice to GA and cold stress.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 4, 2004

There are no references for this article.