Access the full text.
Sign up today, get DeepDyve free for 14 days.
Pinglong Xu, R. Derynck (2010)
Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation.Molecular cell, 37 4
C. Garbers, F. Kuck, Samadhi Aparicio-Siegmund, Kirstin Konzak, M. Kessenbrock, Annika Sommerfeld, D. Häussinger, P. Lang, D. Brenner, T. Mak, S. Rose-John, F. Essmann, K. Schulze-Osthoff, R. Piekorz, J. Scheller (2013)
Cellular senescence or EGFR signaling induces Interleukin 6 (IL-6) receptor expression controlled by mammalian target of rapamycin (mTOR)Cell Cycle, 12
Emanuele Cocucci, G. Racchetti, J. Meldolesi (2009)
Shedding microvesicles: artefacts no more.Trends in cell biology, 19 2
É. Segura, C. Nicco, Bérangère Lombard, P. Véron, G. Raposo, F. Batteux, S. Amigorena, C. Théry (2005)
ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming.Blood, 106 1
R. Black, C. Rauch, C. Kozlosky, J. Peschon, J. Slack, M. Wolfson, B. Castner, K. Stocking, P. Reddy, S. Srinivasan, N. Nelson, N. Boiani, K. Schooley, M. Gerhart, Raymond Davis, J. Fitzner, Richard Johnson, R. Paxton, C. March, Douglas Cerretti (1997)
A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cellsNature, 385
N. Tsakadze, Srinivas Sithu, U. Sen, W. English, G. Murphy, S. D’Souza (2006)
Tumor Necrosis Factor- -converting Enzyme (TACE/ADAM- 17) Mediates the Ectodomain Cleavage of Intercellular Adhesion Molecule-1 (ICAM-1)*
A. Trad, N. Hedemann, M. Shomali, Verena Pawlak, J. Grötzinger, I. Lorenzen (2011)
Development of sandwich ELISA for detection and quantification of human and murine a disintegrin and metalloproteinase17.Journal of immunological methods, 371 1-2
Emilio Fiore, C. Fusco, P. Romero, I. Stamenkovic (2002)
Matrix metalloproteinase 9 (MMP-9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicityOncogene, 21
Eric Essick, Srinivas Sithu, William Dean, Stanley D'souza (2008)
Pervanadate-induced shedding of the intercellular adhesion molecule (ICAM)-1 ectodomain is mediated by membrane type-1 matrix metalloproteinase (MT1-MMP)Molecular and Cellular Biochemistry, 314
E. Alexander, D. G. Hildebrand, A. Kriebs, K. Obermayer, M. Manz, O. Rothfuss, K. Schulze‐Osthoff, F. Essmann (2013)
IkappaBzeta is a regulator of the senescence‐associated secretory phenotype in DNA damage‐ and oncogene‐induced senescence, 126
E. Jorissen, J. Prox, C. Bernreuther, S. Weber, R. Schwanbeck, L. Serneels, An Snellinx, K. Craessaerts, A. Thathiah, I. Tesseur, U. Bartsch, G. Weskamp, C. Blobel, M. Glatzel, B. Strooper, P. Saftig (2010)
The Disintegrin/Metalloproteinase ADAM10 Is Essential for the Establishment of the Brain CortexThe Journal of Neuroscience, 30
B. Walcheck, A. Herrera, C. Hill, Polly Mattila, Adeline Whitney, F. DeLeo (2006)
ADAM17 activity during human neutrophil activation and apoptosisEuropean Journal of Immunology, 36
K. Rodland, N. Bollinger, D. Ippolito, L. Opresko, R. Coffey, R. Zangar, H. Wiley (2008)
Multiple Mechanisms Are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells*Journal of Biological Chemistry, 283
S. Soond, B. Everson, D. Riches, G. Murphy (2005)
ERK-mediated phosphorylation of Thr735 in TNFα-converting enzyme and its potential role in TACE protein traffickingJournal of Cell Science, 118
Adam Freund, C. Patil, J. Campisi (2011)
p38MAPK is a novel DNA damage response‐independent regulator of the senescence‐associated secretory phenotypeThe EMBO Journal, 30
Adam Freund, Arturo Orjalo, P. Desprez, J. Campisi (2010)
Inflammatory networks during cellular senescence: causes and consequences.Trends in molecular medicine, 16 5
F. Rodier, J. Campisi (2011)
Four faces of cellular senescenceThe Journal of Cell Biology, 192
F. Rodier, Jean-Philippe Coppé, C. Patil, W. Hoeijmakers, Denise Muñoz, Saba Raza, Adam Freund, E. Campeau, Albert Davalos, J. Campisi (2009)
Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretionNature cell biology, 11
Jean-Philippe Coppé, P. Desprez, A. Krtolica, J. Campisi (2010)
The senescence-associated secretory phenotype: the dark side of tumor suppression.Annual review of pathology, 5
F. Hawari, Farshid Rouhani, Xinle Cui, Zu-Xi Yu, Caitriona Buckley, M. Kaler, S. Levine (2004)
Release of full-length 55-kDa TNF receptor 1 in exosome-like vesicles: a mechanism for generation of soluble cytokine receptors.Proceedings of the National Academy of Sciences of the United States of America, 101 5
(1997)
SENESCENCE-INDUCED ECTODOMAIN SHEDDING VIA ADAM17
P. Kharaziha, S. Ceder, Qiao Li, T. Panaretakis (2012)
Tumor cell-derived exosomes: a message in a bottle.Biochimica et biophysica acta, 1826 1
C. Båvik, Ilsa Coleman, J. Dean, B. Knudsen, S. Plymate, P. Nelson (2006)
The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms.Cancer research, 66 2
P. Kenny, M. Bissell (2007)
Targeting TACE-dependent EGFR ligand shedding in breast cancer.The Journal of clinical investigation, 117 2
Jean-Philippe Coppé, Jean-Philippe Coppé, Christopher Patil, Christopher Patil, Francis Rodier, Francis Rodier, A. Krtolica, C. Beauséjour, S. Parrinello, J. Hodgson, K. Chin, P. Desprez, P. Desprez, P. Desprez, Judith Campisi, Judith Campisi (2010)
A Human-Like Senescence-Associated Secretory Phenotype Is Conserved in Mouse Cells Dependent on Physiological OxygenPLoS ONE, 5
Jean-Philippe Coppé, C. Patil, F. Rodier, Yu Sun, Denise Muñoz, J. Goldstein, P. Nelson, P. Desprez, J. Campisi (2008)
Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor SuppressorPLoS Biology, 6
R. Salama, Mahito Sadaie, M. Hoare, M. Narita (2014)
Cellular senescence and its effector programsGenes & Development, 28
L. A. Madge, M. R. Sierra‐Honigmann, J. S. Pober (1999)
Apoptosis‐inducing agents cause rapid shedding of tumor necrosis factor receptor 1 (TNFR1). A nonpharmacological explanation for inhibition of TNF‐mediated activation, 274
R. Black, C. Rauch, C. Kozlosky, J. Peschon, J. Slack, M. Wolfson, B. Castner, K. Stocking, P. Reddy, S. Srinivasan, N. Nelson, N. Boiani, K. Schooley, M. Gerhart, R. Davis, J. Fitzner, R. Johnson, R. Paxton, C. March, D. Cerretti (1997)
A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells.Nature, 385 6618
Kosuke Yamamoto, A. Trad, A. Baumgart, Linda Hüske, I. Lorenzen, A. Chalaris, J. Grötzinger, T. Dechow, J. Scheller, S. Rose-John (2012)
A novel bispecific single-chain antibody for ADAM17 and CD3 induces T-cell-mediated lysis of prostate cancer cells.The Biochemical journal, 445 1
L. Madge, M. Sierra-Honigmann, J. Pober (1999)
Apoptosis-inducing Agents Cause Rapid Shedding of Tumor Necrosis Factor Receptor 1 (TNFR1)The Journal of Biological Chemistry, 274
A. Chalaris, Björn Rabe, K. Paliga, H. Lange, T. Laskay, C. Fielding, Simon Jones, S. Rose-John, J. Scheller (2007)
Apoptosis is a natural stimulus of IL6R shedding and contributes to the proinflammatory trans-signaling function of neutrophils.Blood, 110 6
C. Tape, S. Willems, S. Dombernowsky, P. Stanley, M. Fogarasi, W. Ouwehand, J. McCafferty, G. Murphy (2011)
Cross-domain inhibition of TACE ectodomainProceedings of the National Academy of Sciences, 108
J. Shay, I. Roninson (2004)
Hallmarks of senescence in carcinogenesis and cancer therapyOncogene, 23
J. Scheller, A. Chalaris, C. Garbers, S. Rose-John (2011)
ADAM17: a molecular switch to control inflammation and tissue regeneration.Trends in immunology, 32 8
W. Xue, L. Zender, C. Miething, R. Dickins, E. Hernando, V. Krizhanovsky, C. Cordon-Cardo, S. Lowe (2007)
Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomasNature, 445
Mo Kang, A. Kameta, K. Shin, M. Baluda, Hae-Ryun Kim, N. Park (2003)
Senescence-associated genes in normal human oral keratinocytes.Experimental cell research, 287 2
E. Alexander, D. Hildebrand, Anna Kriebs, Kerstin Obermayer, M. Manz, Oliver Rothfuss, K. Schulze-Osthoff, F. Essmann (2013)
I&kgr;B&zgr; is a regulator of the senescence-associated secretory phenotype in DNA damage- and oncogene-induced senescenceJournal of Cell Science, 126
A. Ventura, D. Kirsch, M. Mclaughlin, D. Tuveson, J. Grimm, L. Lintault, J. Newman, Elizabeth Reczek, R. Weissleder, T. Jacks (2007)
Restoration of p53 function leads to tumour regression in vivoNature, 445
M. Moss, S. Jin, M. Milla, W. Burkhart, H. Carter, Wenjing Chen, W. Clay, J. Didsbury, D. Hassler, C. Hoffman, T. Kost, M. Lambert, M. Leesnitzer, P. McCauley, G. McGeehan, Justin Mitchell, M. Moyer, G. Pahel, W. Rocque, L. Overton, F. Schoenen, T. Seaton, J. Su, J. Warner, D. Willard, J. Becherer (1997)
Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-αNature, 385
A. Millis, M. Hoyle, Heather McCue, Heike Martini (1992)
Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human fibroblasts.Experimental cell research, 201 2
G. Murphy (2008)
The ADAMs: signalling scissors in the tumour microenvironmentNature Reviews Cancer, 8
B. Lehmann, M. Paine, A. Brooks, J. McCubrey, R. Renegar, Rong Wang, D. Terrian (2008)
Senescence-associated exosome release from human prostate cancer cells.Cancer research, 68 19
Jean-Philippe Coppé, K. Kauser, J. Campisi, C. Beauséjour (2006)
Secretion of Vascular Endothelial Growth Factor by Primary Human Fibroblasts at Senescence*Journal of Biological Chemistry, 281
T. Kuilman, D. Peeper (2009)
Senescence-messaging secretome: SMS-ing cellular stressNature Reviews Cancer, 9
Cellular senescence, a state of persistent cell cycle arrest, has emerged as a potent tumor suppressor mechanism by restricting proliferation of cells at risk for neoplastic transformation. Senescent cells secrete various growth factors, cytokines, and other proteins that can either elicit the clearance of tumor cells or potentially promote tumor progression. In addition, this senescence‐associated secretory phenotype (SASP) includes various factors that are synthesized as transmembrane precursors and subsequently converted into their soluble counterparts. Despite the importance of the SASP to tumor biology, it is virtually unknown how transmembrane proteins are released from senescent cancer cells. Here we show in different models of senescence that the metalloprotease A disintegrin and metalloproteinase 17 (ADAM17) is activated and releases the epidermal growth factor receptor ligand amphiregulin and tumor necrosis factor receptor I (TNFRI) from the surface of senescent cells by ectodomain shedding. ADAM17 activation involves phosphorylation of its cytoplasmic tail by mitogen‐activated protein kinase (MAPK) p38. Interestingly, unlike amphiregulin and TNFRI, full‐length intercellular adhesion molecule 1 (ICAM1) is released from senescent cells by microvesicles independently of ADAM17. Thus, our results suggest that transmembrane proteins can be released by two distinct mechanisms and point to a crucial role for ADAM17 in shaping the secretory profile of senescent cells.—Effenberger, T., von der Heyde, J., Bartsch, K., Garbers, C., Schulze‐Osthoff, K., Chalaris, A., Murphy, G., Rose‐John, S., Rabe, B., Senescence‐associated release of transmembrane proteins involves proteolytic processing by ADAM17 and microvesicle shedding. FASEB J. 28, 4847–4856 (2014). www.fasebj.org
The FASEB journal – Wiley
Published: Nov 1, 2014
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.