Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B‐like BHLH proteins

Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with... In‐depth analysis of protein–protein interaction specificities of the MYB protein family of Arabidopsis thaliana revealed a conserved amino acid signature ([DE]Lx2[RK]x3Lx6Lx3R) as the structural basis for interaction between MYB and R/B‐like BHLH proteins. The motif has successfully been used to predict new MYB/BHLH interactions for A. thaliana proteins, it allows to discriminate between even closely related MYB proteins and it is conserved amongst higher plants. In A. thaliana, the motif is shared by fourteen R2R3 MYB proteins and six 1R MYB proteins. It is located on helices 1 and 2 of the R3 repeat and forms a characteristic surface‐exposed pattern of hydrophobic and charged residues. Single‐site mutation of any amino acid of the signature impairs the interaction. Two particular amino acids have been determined to account for most of the interaction stability. Functional specificity of MYB/BHLH complexes was investigated in vivo by a transient DFR promoter activation assay. Residues stabilizing the MYB/BHLH interaction were shown to be critical for promoter activation. By virtue of proved and predicted interaction specificities, this study provides a comprehensive survey of the MYB proteins that interact with R/B‐like BHLH proteins potentially involved in the TTG1‐dependent regulatory interaction network. The results are discussed with respect to multi‐functionality, specificity and redundancy of MYB and BHLH protein function. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Plant Journal Wiley

Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B‐like BHLH proteins

Loading next page...
 
/lp/wiley/comprehensive-identification-of-arabidopsis-thaliana-myb-transcription-JxkTIm0Z9p

References (84)

Publisher
Wiley
Copyright
Copyright © 2004 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0960-7412
eISSN
1365-313X
DOI
10.1111/j.1365-313X.2004.02183.x
pmid
15361138
Publisher site
See Article on Publisher Site

Abstract

In‐depth analysis of protein–protein interaction specificities of the MYB protein family of Arabidopsis thaliana revealed a conserved amino acid signature ([DE]Lx2[RK]x3Lx6Lx3R) as the structural basis for interaction between MYB and R/B‐like BHLH proteins. The motif has successfully been used to predict new MYB/BHLH interactions for A. thaliana proteins, it allows to discriminate between even closely related MYB proteins and it is conserved amongst higher plants. In A. thaliana, the motif is shared by fourteen R2R3 MYB proteins and six 1R MYB proteins. It is located on helices 1 and 2 of the R3 repeat and forms a characteristic surface‐exposed pattern of hydrophobic and charged residues. Single‐site mutation of any amino acid of the signature impairs the interaction. Two particular amino acids have been determined to account for most of the interaction stability. Functional specificity of MYB/BHLH complexes was investigated in vivo by a transient DFR promoter activation assay. Residues stabilizing the MYB/BHLH interaction were shown to be critical for promoter activation. By virtue of proved and predicted interaction specificities, this study provides a comprehensive survey of the MYB proteins that interact with R/B‐like BHLH proteins potentially involved in the TTG1‐dependent regulatory interaction network. The results are discussed with respect to multi‐functionality, specificity and redundancy of MYB and BHLH protein function.

Journal

The Plant JournalWiley

Published: Oct 1, 2004

Keywords: ; ; ; ;

There are no references for this article.