Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Evaluating the role of the dingo as a trophic regulator in Australian ecosystems

Evaluating the role of the dingo as a trophic regulator in Australian ecosystems Abstract The importance of strongly interactive predators has been demonstrated in many ecosystems, and the maintenance or restoration of species interactions is a major priority in the global conservation of biodiversity. By limiting populations of prey and/or competitors, apex predators can increase the diversity of systems, often exerting influences that cascade through several trophic levels. In Australia, emerging evidence points increasingly towards the dingo (Canis lupus dingo) as a strongly interactive species that has profound effects on ecosystem function. Through predatory and competitive effects, dingoes can alter the abundance and function of mesopredators including the introduced red fox (Vulpes vulpes) and feral cat (Felis catus), and herbivores including the European rabbit (Oryctolagus cuniculus). These effects often benefit populations of native prey, and diversity and biomass of vegetation, but may not occur under all circumstances. For example, the social structure of dingoes is of great importance; a pack subject to minimal human interference regulates its own numbers, and such packs appear to have fewer undesirable impacts such as predation on livestock. Despite abundant observational evidence that the dingo is a strong interactor, there have been few attempts to test its ecological role experimentally. Given the well‐recognized importance of species interactions to ecosystem function, it is imperative that such experiments be carried out. To do this, we propose three broad questions: (i) do dingoes limit the abundance of other predators or prey? (ii) do dingoes affect the ecological relationships of other predators or prey (e.g. by altering their spatial or temporal activity patterns)? and (iii) does the removal or reintroduction of dingoes entrain ecological cascades? Finally, we discuss the design of appropriate experiments, using principles that may also be applied to investigate species interactions on other continents. Research might seek to clarify not only the impacts of dingoes at all trophic levels, but also the mechanisms by which these impacts occur. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Austral Ecology Wiley

Evaluating the role of the dingo as a trophic regulator in Australian ecosystems

Loading next page...
 
/lp/wiley/evaluating-the-role-of-the-dingo-as-a-trophic-regulator-in-australian-F0K1ahTPWo

References (95)

Publisher
Wiley
Copyright
Copyright © 2007 Wiley Subscription Services, Inc., A Wiley Company
ISSN
1442-9985
eISSN
1442-9993
DOI
10.1111/j.1442-9993.2007.01721.x
Publisher site
See Article on Publisher Site

Abstract

Abstract The importance of strongly interactive predators has been demonstrated in many ecosystems, and the maintenance or restoration of species interactions is a major priority in the global conservation of biodiversity. By limiting populations of prey and/or competitors, apex predators can increase the diversity of systems, often exerting influences that cascade through several trophic levels. In Australia, emerging evidence points increasingly towards the dingo (Canis lupus dingo) as a strongly interactive species that has profound effects on ecosystem function. Through predatory and competitive effects, dingoes can alter the abundance and function of mesopredators including the introduced red fox (Vulpes vulpes) and feral cat (Felis catus), and herbivores including the European rabbit (Oryctolagus cuniculus). These effects often benefit populations of native prey, and diversity and biomass of vegetation, but may not occur under all circumstances. For example, the social structure of dingoes is of great importance; a pack subject to minimal human interference regulates its own numbers, and such packs appear to have fewer undesirable impacts such as predation on livestock. Despite abundant observational evidence that the dingo is a strong interactor, there have been few attempts to test its ecological role experimentally. Given the well‐recognized importance of species interactions to ecosystem function, it is imperative that such experiments be carried out. To do this, we propose three broad questions: (i) do dingoes limit the abundance of other predators or prey? (ii) do dingoes affect the ecological relationships of other predators or prey (e.g. by altering their spatial or temporal activity patterns)? and (iii) does the removal or reintroduction of dingoes entrain ecological cascades? Finally, we discuss the design of appropriate experiments, using principles that may also be applied to investigate species interactions on other continents. Research might seek to clarify not only the impacts of dingoes at all trophic levels, but also the mechanisms by which these impacts occur.

Journal

Austral EcologyWiley

Published: Aug 1, 2007

There are no references for this article.