Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Design and performance comparison of multiple-token based MAC protocols for optical burst switched ring networks

Design and performance comparison of multiple-token based MAC protocols for optical burst... Optical burst switching (OBS) has been proposed as a new optical switching paradigm for the next generation Internet due to its flexibility and feasibility compared to OCS and OPS. Moreover, serving as a backbone that interconnects a number of access networks, OBS ring topologies have been a good choice for solving the current metro gap problem between core network and access network owning to its simplicity and scalability. In this paper, we provide an insight into the OBS ring network that consists of nodes using TT–TR (Tunable Transmitter–Tunable Receiver). The node architectures with TT–TR may make efficient use of network resources even though traffic pattern, such as IP traffic with self-similarity dynamically change, and can support good expandability. However, all nodes share the limited network resources. This may result in contention such as wavelength contention and transceiver contention leading to burst loss. In order to use the shared network resources fairly and efficiently as well as reducing the resource contention, we focus on the design of medium access control (MAC) protocols based on multiple tokens. Each token is allocated to one wavelength to denote the accessibility of that wavelength, i.e., once the token is captured, the corresponding wavelength can be used to transmit a burst. As tokens hold the key for using wavelengths to transmit bursts, token management including the token release time is crucial in the proposed MAC protocols. Thus, two kinds of multiple-token based MAC protocols with different token release times are proposed: token release after transmitting burst (TRTB) and token release after transmitting control header (TRTC). Each of them is classified into two schemes called TRTB/TRR and TRTB/RCA and correspondingly TRTC/TRR and TRTC/ RCA. RCA stands for receive collision avoidance. The target is to increase the performance while reducing the processing overhead at each node. The performance of the TRTB and TRTC protocols are evaluated and compared in terms of queuing delay, burst loss rate, and channel utilization by OPNET simulation. The effects of various design parameters are also investigated through simulation in order to evaluate their scalability. In all the proposed schemes, tokens are just used to denote the accessibility of each wavelength. Finally, as an alternative, we also propose a new scheme based on the TRTC protocol called TRTC/CAT (collision avoidance by tokens) to avoid contention by using tokens. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Design and performance comparison of multiple-token based MAC protocols for optical burst switched ring networks

Loading next page...
 
/lp/springer-journals/design-and-performance-comparison-of-multiple-token-based-mac-Do7CJ825s0

References (8)

Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
DOI
10.1007/s11107-007-0108-8
Publisher site
See Article on Publisher Site

Abstract

Optical burst switching (OBS) has been proposed as a new optical switching paradigm for the next generation Internet due to its flexibility and feasibility compared to OCS and OPS. Moreover, serving as a backbone that interconnects a number of access networks, OBS ring topologies have been a good choice for solving the current metro gap problem between core network and access network owning to its simplicity and scalability. In this paper, we provide an insight into the OBS ring network that consists of nodes using TT–TR (Tunable Transmitter–Tunable Receiver). The node architectures with TT–TR may make efficient use of network resources even though traffic pattern, such as IP traffic with self-similarity dynamically change, and can support good expandability. However, all nodes share the limited network resources. This may result in contention such as wavelength contention and transceiver contention leading to burst loss. In order to use the shared network resources fairly and efficiently as well as reducing the resource contention, we focus on the design of medium access control (MAC) protocols based on multiple tokens. Each token is allocated to one wavelength to denote the accessibility of that wavelength, i.e., once the token is captured, the corresponding wavelength can be used to transmit a burst. As tokens hold the key for using wavelengths to transmit bursts, token management including the token release time is crucial in the proposed MAC protocols. Thus, two kinds of multiple-token based MAC protocols with different token release times are proposed: token release after transmitting burst (TRTB) and token release after transmitting control header (TRTC). Each of them is classified into two schemes called TRTB/TRR and TRTB/RCA and correspondingly TRTC/TRR and TRTC/ RCA. RCA stands for receive collision avoidance. The target is to increase the performance while reducing the processing overhead at each node. The performance of the TRTB and TRTC protocols are evaluated and compared in terms of queuing delay, burst loss rate, and channel utilization by OPNET simulation. The effects of various design parameters are also investigated through simulation in order to evaluate their scalability. In all the proposed schemes, tokens are just used to denote the accessibility of each wavelength. Finally, as an alternative, we also propose a new scheme based on the TRTC protocol called TRTC/CAT (collision avoidance by tokens) to avoid contention by using tokens.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Nov 13, 2007

There are no references for this article.