Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates

Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates Abstract Calorie restriction (CR) increases longevity and retards the development of many chronic diseases, but the underlying metabolic signals are poorly understood. Increased fatty acid (FA) oxidation and reduced FA synthesis have been hypothesized to be important metabolic adaptations to CR. However, at metabolic steady state, FA oxidation must match FA intake plus synthesis; moreover, FA intake is low, not high, during CR. Therefore, it is not clear how FA dynamics are altered during CR. Accordingly, we measured food intake patterns, whole body fuel selection, endogenous FA synthesis, and gene expression in mice on CR. Within 2 days of CR being started, a shift to a cyclic, diurnal pattern of whole body FA metabolism occurred, with an initial phase of elevated endogenous FA synthesis respiratory exchange ratio (RER) >1.10, lasting 4–6 h after food provision, followed by a prolonged phase of FA oxidation (RER = 0.70, lasting 18–20 h). CR mice oxidized four times as much fat per day as ad libitum (AL)-fed controls (367 ± 19 vs. 97 ± 14 mg/day, P < O.001) despite reduced energy intake from fat. This increase in FA oxidation was balanced by a threefold increase in adipose tissue FA synthesis compared with AL. Expression of FA synthase and acetyl-CoA carboxylase mRNA were increased in adipose and liver in a time-dependent manner. We conclude that CR induces a surprising metabolic pattern characterized by periods of elevated FA synthesis alternating with periods of FA oxidation disproportionate to dietary FA intake. This pattern may have implications for oxidative damage and disease risk. fat synthesis lipogenesis palmitoleate heavy water Copyright © 2010 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png AJP - Endocrinology and Metabolism The American Physiological Society

Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates

Loading next page...
 
/lp/the-american-physiological-society/calorie-restriction-increases-fatty-acid-synthesis-and-whole-body-fat-DDL55egkBO

References (48)

Publisher
The American Physiological Society
Copyright
Copyright © 2011 the American Physiological Society
ISSN
0193-1849
eISSN
1522-1555
DOI
10.1152/ajpendo.00524.2009
pmid
19887594
Publisher site
See Article on Publisher Site

Abstract

Abstract Calorie restriction (CR) increases longevity and retards the development of many chronic diseases, but the underlying metabolic signals are poorly understood. Increased fatty acid (FA) oxidation and reduced FA synthesis have been hypothesized to be important metabolic adaptations to CR. However, at metabolic steady state, FA oxidation must match FA intake plus synthesis; moreover, FA intake is low, not high, during CR. Therefore, it is not clear how FA dynamics are altered during CR. Accordingly, we measured food intake patterns, whole body fuel selection, endogenous FA synthesis, and gene expression in mice on CR. Within 2 days of CR being started, a shift to a cyclic, diurnal pattern of whole body FA metabolism occurred, with an initial phase of elevated endogenous FA synthesis respiratory exchange ratio (RER) >1.10, lasting 4–6 h after food provision, followed by a prolonged phase of FA oxidation (RER = 0.70, lasting 18–20 h). CR mice oxidized four times as much fat per day as ad libitum (AL)-fed controls (367 ± 19 vs. 97 ± 14 mg/day, P < O.001) despite reduced energy intake from fat. This increase in FA oxidation was balanced by a threefold increase in adipose tissue FA synthesis compared with AL. Expression of FA synthase and acetyl-CoA carboxylase mRNA were increased in adipose and liver in a time-dependent manner. We conclude that CR induces a surprising metabolic pattern characterized by periods of elevated FA synthesis alternating with periods of FA oxidation disproportionate to dietary FA intake. This pattern may have implications for oxidative damage and disease risk. fat synthesis lipogenesis palmitoleate heavy water Copyright © 2010 the American Physiological Society

Journal

AJP - Endocrinology and MetabolismThe American Physiological Society

Published: Jan 1, 2010

There are no references for this article.