Access the full text.
Sign up today, get DeepDyve free for 14 days.
Chuan Huang, C. Graff, E. Clarkson, A. Bilgin, M. Altbach (2012)
T2 mapping from highly undersampled data by reconstruction of principal component coefficient maps using compressed sensingMagnetic Resonance in Medicine, 67
Donoho (2006)
Compressed sensingIEEE Trans Inf Theory, 52
Xiaojuan Li, C. Wyatt, J. Rivoire, E. Han, Weitian Chen, J. Schooler, F. Liang, K. Shet, R. Souza, S. Majumdar (2014)
Simultaneous acquisition of T1ρ and T2 quantification in knee cartilage: Repeatability and diurnal variationJournal of Magnetic Resonance Imaging, 39
P. Hansen (1987)
Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion
Kathryn Keenan, T. Besier, John Pauly, E. Han, Jarrett Rosenberg, R. Smith, S. Delp, G. Beaupré, Garry Gold (2011)
Prediction of glycosaminoglycan content in human cartilage by age, T1ρ and T2 MRI.Osteoarthritis and cartilage, 19 2
M. Doneva, P. Börnert, H. Eggers, C. Stehning, J. Sénégas, A. Mertins (2010)
Compressed sensing reconstruction for magnetic resonance parameter mappingMagnetic Resonance in Medicine, 64
Bo Zhao, F. Lam, Wenmiao Lu, Zhi-Pei Liang (2013)
Model-based MR parameter mapping with sparsity constraint2013 IEEE 10th International Symposium on Biomedical Imaging
Xiaojuan Li, A. Pai, G. Blumenkrantz, J. Carballido-Gamio, T. Link, B. Ma, M. Ries, S. Majumdar (2009)
Spatial distribution and relationship of T1ρ and T2 relaxation times in knee cartilage with osteoarthritisMagnetic Resonance in Medicine, 61
Xiaojuan Li, D. Kuo, A. Theologis, J. Carballido-Gamio, C. Stehling, T. Link, C. Ma, S. Majumdar (2011)
Cartilage in anterior cruciate ligament-reconstructed knees: MR imaging T1{rho} and T2--initial experience with 1-year follow-up.Radiology, 258 2
Xiaojuan Li, E. Han, R. Busse, S. Majumdar (2008)
In vivo T1ρ mapping in cartilage using 3D magnetization‐prepared angle‐modulated partitioned k‐space spoiled gradient echo snapshots (3D MAPSS)Magnetic Resonance in Medicine, 59
Zhao (2014)
Model-based MR parameter mapping with sparsity constraints: parameter estimation and performance boundsIEEE Trans Med Imaging, 33
K. Block, M. Uecker, J. Frahm (2009)
Model-Based Iterative Reconstruction for Radial Fast Spin-Echo MRIIEEE Transactions on Medical Imaging, 28
Hong Jung, K. Sung, K. Nayak, E. Kim, J. Ye (2009)
k‐t FOCUSS: A general compressed sensing framework for high resolution dynamic MRIMagnetic Resonance in Medicine, 61
J. Carballido-Gamio, J. Bauer, Keh-Yang Lee, S. Krause, S. Majumdar (2005)
Combined Image Processing Techniques for Characterization of MRI Cartilage of the Knee2005 IEEE Engineering in Medicine and Biology 27th Annual Conference
D. Liang, Bo Liu, Jiunjie Wang, L. Ying (2009)
Accelerating SENSE using compressed sensingMagnetic Resonance in Medicine, 62
Li Feng, R. Otazo, Hong Jung, J. Jensen, J. Ye, D. Sodickson, Daniel Kim (2011)
Accelerated cardiac T2 mapping using breath‐hold multiecho fast spin‐echo pulse sequence with k‐t FOCUSSMagnetic Resonance in Medicine, 65
I. Gorodnitsky, B. Rao (1997)
Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithmIEEE Trans. Signal Process., 45
M. Lustig, D. Donoho, J. Pauly (2007)
Sparse MRI: The application of compressed sensing for rapid MR imagingMagnetic Resonance in Medicine, 58
J. Zuo, Xiaojuan Li, Suchandrima Banerjee, E. Han, S. Majumdar (2007)
Parallel imaging of knee cartilage at 3 TeslaJournal of Magnetic Resonance Imaging, 26
Yilun Wang, W. Yin (2009)
Sparse Signal Reconstruction via Iterative Support DetectionSIAM J. Imaging Sci., 3
J. Carballido-Gamio, J. Bauer, R. Stahl, Keh-Yang Lee, S. Krause, T. Link, S. Majumdar (2008)
Inter-subject comparison of MRI knee cartilage thicknessMedical image analysis, 12 2
E. Candès, J. Romberg, T. Tao (2004)
Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency informationIEEE Transactions on Information Theory, 52
L. Ying, J. Sheng (2007)
Joint image reconstruction and sensitivity estimation in SENSE (JSENSE)Magnetic Resonance in Medicine, 57
M. Griswold, P. Jakob, R. Heidemann, M. Nittka, V. Jellús, Jianmin Wang, B. Kiefer, A. Haase (2002)
Generalized autocalibrating partially parallel acquisitions (GRAPPA)Magnetic Resonance in Medicine, 47
Xiaojuan Li, C. Ma, T. Link, Darwin-Dean Castillo, G. Blumenkrantz, J. Lozano, J. Carballido-Gamio, M. Ries, S. Majumdar (2007)
In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI.Osteoarthritis and cartilage, 15 7
Yanjie Zhu, Qinwei Zhang, Qiegen Liu, Yi‐Xiang Wang, Xin Liu, Hairong Zheng, D. Liang, Jing Yuan (2015)
PANDA‐ T1ρ : Integrating principal component analysis and dictionary learning for fast T1ρ mappingMagnetic Resonance in Medicine, 73
J. Bland, Douglas Altman (1986)
STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENTThe Lancet, 327
Yihang Zhou, V. Pedoia, J. Rivoire, Yanhua Wang, D. Liang, Xiaojuan Li, L. Ying (2013)
Accelerating T 1-rho Cartilage Imaging Using kt ISD with Locally-Adapted Thresholding and JSENSE
(2001)
Dynamic imaging by temporal modeling with principal component analysis
Tao Zhang, J. Pauly, I. Levesque (2015)
Accelerating parameter mapping with a locally low rank constraintMagnetic Resonance in Medicine, 73
D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, D. Hawkes (1999)
Nonrigid registration using free-form deformations: application to breast MR imagesIEEE Transactions on Medical Imaging, 18
Beckett Ah, M. Rowland, P. Turner (1965)
AKUFO AND IBARAPA.Lancet, 1 7380
K. Pruessmann, M. Weiger, M. Scheidegger, P. Boesiger (1999)
SENSE: Sensitivity encoding for fast MRIMagnetic Resonance in Medicine, 42
Wen Li, M. Griswold, Xin Yu (2012)
Fast cardiac T1 mapping in mice using a model‐based compressed sensing methodMagnetic Resonance in Medicine, 68
I. Gorodnitsky, J. George, B. Rao (1995)
Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm.Electroencephalography and clinical neurophysiology, 95 4
Bo Zhao, Wenmiao Lu, T. Hitchens, F. Lam, Chien Ho, Zhi-Pei Liang (2015)
Accelerated MR parameter mapping with low‐rank and sparsity constraintsMagnetic Resonance in Medicine, 74
P. Pandit, J. Rivoire, K. King, Xiaojuan Li (2016)
Accelerated T1ρ acquisition for knee cartilage quantification using compressed sensing and data‐driven parallel imaging: A feasibility studyMagnetic Resonance in Medicine, 75
Gitta Kutyniok (2012)
Compressed Sensing
Hong Jung, J. Ye, E. Kim (2007)
Improved k–t BLAST and k–t SENSE using FOCUSSPhysics in Medicine & Biology, 52
T. Sumpf, M. Uecker, S. Boretius, J. Frahm (2011)
Model‐based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin‐echo MRIJournal of Magnetic Resonance Imaging, 34
L. Ying, Zhi-Pei Liang (2010)
Parallel MRI Using Phased Array CoilsIEEE Signal Processing Magazine, 27
Xiaojuan Li, C. Ma, T. Link, D. Castillo, G. Blumenkrantz, J. Lozano, J. Carballido-Gamio, Michael, Ries, S. Majumdar (2007)
IN VIVO T1RHO AND T2 MAPPING OF ARTICULAR CARTILAGE IN OSTEOARTHRITIS OF THE KNEE USING 3 TESLA MRI
D. Walsh, A. Gmitro, M. Marcellin (2000)
Adaptive reconstruction of phased array MR imageryMagnetic Resonance in Medicine, 43
C. Taylor, J. Carballido-Gamio, S. Majumdar, Xiaojuan Li (2009)
Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1rho, dGEMRIC and contrast-enhanced computed tomography.Magnetic resonance imaging, 27 6
J. Tsao, P. Boesiger, K. Pruessmann (2003)
k‐t BLAST and k‐t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlationsMagnetic Resonance in Medicine, 50
J. Velikina, A. Alexander, A. Samsonov (2013)
Accelerating MR parameter mapping using sparsity‐promoting regularization in parametric dimensionMagnetic Resonance in Medicine, 70
Zhi-Pei Liang (2007)
Spatiotemporal Imaging with Partially Separable Functions2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging
D. Sodickson, W. Manning (1997)
Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arraysMagnetic Resonance in Medicine, 38
D. Liang, E. DiBella, Rong-Rong Chen, L. Ying (2011)
Word count : 6 , 287 kt ISD : Dynamic Cardiac MR Imaging Using Compressed Sensing with Iterative Support Detection
M. Griswold, D. Walsh, R. Heidemann, A. Haase, P. Jakob (2002)
The use of an adaptive reconstruction for array coil sensitivity mapping and intensity normalization
Purpose To accelerate T1ρ quantification in cartilage imaging using combined compressed sensing with iterative locally adaptive support detection and JSENSE. Methods To reconstruct T1ρ images from accelerated acquisition at different time of spin‐lock (TSLs), we propose an approach to combine an advanced compressed sensing (CS) based reconstruction technique, LAISD (locally adaptive iterative support detection), and an advanced parallel imaging technique, JSENSE. Specifically, the reconstruction process alternates iteratively among local support detection in the domain of principal component analysis, compressed sensing reconstruction of the image sequence, and sensitivity estimation with JSENSE. T1ρ quantification results from accelerated scans using the proposed method are evaluated using in vivo knee cartilage data from bilateral scans of three healthy volunteers. Results T1ρ maps obtained from accelerated scans (acceleration factors of 3 and 3.5) using the proposed method showed results comparable to conventional full scans. The T1ρ errors in all compartments are below 1%, which is well below the in vivo reproducibility of cartilage T1ρ reported from previous studies. Conclusion The proposed method can significantly accelerate the acquisition process of T1ρ quantification on human cartilage imaging without sacrificing accuracy, which will greatly facilitate the clinical translation of quantitative cartilage MRI. Magn Reson Med 75:1617–1629, 2016. © 2015 Wiley Periodicals, Inc.
Magnetic Resonance in Medicine – Wiley
Published: Apr 1, 2016
Keywords: ; ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.