Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Active vibroacoustic control with multiple local feedback loops

Active vibroacoustic control with multiple local feedback loops The active control of a structure in order to reduce its vibration or sound radiation, which may be termed active vibro-acoustic control, has previously been achieved with multiple actuators and sensors and fully-coupled feedforward or feedback controllers. In this paper local velocity feedback using multiple miniature accelerometers will be investigated, together with either collocated force actuators or piezoceramic actuators placed under each sensor. With ideal force actuators, the plant response is passive for such an arrangement of collocated actuator/sensor pairs and so decentralized (local) feedback is guaranteed stable. This property is shown to extend to collocated velocity sensors and piezoceramic actuators over the bandwidth of interest and so multiple local feedback loops are also predicted to be stable. The performance of such a system is simulated in controlling the vibration and sound transmission through a thin plate, excited by an acoustic plane wave, with a 4 x 4 array of such actuator/sensor pairs, which are connected together with 16 local feedback control loops. Using force actuators, significant frequency-averaged reductions up to 1kHz in both the kinetic energy (28dB) and transmitted sound power (18dB) can be obtained with an appropriate feedback gain in each loop. These reductions are not so great with piezoelectric actuators (12dB and 9dB respectively) but their use allows the controller to be fully integrated in the structure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of SPIE SPIE

Active vibroacoustic control with multiple local feedback loops

Proceedings of SPIE , Volume 4327 (1) – Aug 16, 2001

Loading next page...
 
/lp/spie/active-vibroacoustic-control-with-multiple-local-feedback-loops-BT5owBfByM

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
SPIE
Copyright
Copyright © 2003 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
ISSN
0277-786X
eISSN
1996-756X
DOI
10.1117/12.436579
Publisher site
See Article on Publisher Site

Abstract

The active control of a structure in order to reduce its vibration or sound radiation, which may be termed active vibro-acoustic control, has previously been achieved with multiple actuators and sensors and fully-coupled feedforward or feedback controllers. In this paper local velocity feedback using multiple miniature accelerometers will be investigated, together with either collocated force actuators or piezoceramic actuators placed under each sensor. With ideal force actuators, the plant response is passive for such an arrangement of collocated actuator/sensor pairs and so decentralized (local) feedback is guaranteed stable. This property is shown to extend to collocated velocity sensors and piezoceramic actuators over the bandwidth of interest and so multiple local feedback loops are also predicted to be stable. The performance of such a system is simulated in controlling the vibration and sound transmission through a thin plate, excited by an acoustic plane wave, with a 4 x 4 array of such actuator/sensor pairs, which are connected together with 16 local feedback control loops. Using force actuators, significant frequency-averaged reductions up to 1kHz in both the kinetic energy (28dB) and transmitted sound power (18dB) can be obtained with an appropriate feedback gain in each loop. These reductions are not so great with piezoelectric actuators (12dB and 9dB respectively) but their use allows the controller to be fully integrated in the structure.

Journal

Proceedings of SPIESPIE

Published: Aug 16, 2001

There are no references for this article.