Access the full text.
Sign up today, get DeepDyve free for 14 days.
B. Zeller, C. Bréchet, J. Maurice, F. Tacon (2007)
13C and 15N isotopic fractionation in trees, soils and fungi in a natural forest stand and a Norway spruce plantationAnnals of Forest Science, 64
A. Zuev, M. Krivosheina, V. Leonov, M. Öpik, Martti Vasar, A. Saraeva, A. Tiunov, A. Goncharov (2023)
Mycorrhiza-feeding soil invertebrates in two coniferous forests traced with ^13C labellingMycorrhiza, 33
Katja Schneider, S. Migge, R. Norton, S. Scheu, R. Langel, A. Reineking, M. Maraun (2004)
Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N)Soil Biology & Biochemistry, 36
J. Kranabetter, Rachael Harman-Denhoed, B. Hawkins (2018)
Saprotrophic and ectomycorrhizal fungal sporocarp stoichiometry (C : N : P) across temperate rainforests as evidence of shared nutrient constraints among symbionts.The New phytologist, 221 1
H Wickham (2016)
ggplot2
E. Hobbie, R. Agerer (2010)
Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration typesPlant and Soil, 327
L Ruess (2002)
Fatty acids of fungi and nematodes—possible biomarkers in the soil food chain?Soil Biol Biochem, 34
G. Gebauer, P. Dietrich (1993)
Nitrogen Isotope Ratios in Different Compartments of a Mixed Stand of Spruce, Larch and Beech Trees and of Understorey Vegetation Including FungiIsotopes in Environmental and Health Studies, 29
P-E Courty (2008)
Temporal Changes in the Ectomycorrhizal Community in Two Soil Horizons of a Temperate Oak ForestAppl Environ Microbiol, 74
EA Hobbie (2004)
Carbon use, nitrogen use, and isotopic fractionation of ectomycorrhizal and saprotrophic fungi in natural abundance and 13C-labelled culturesMycol Res, 108
Janet Chen, K. Hofmockel, E. Hobbie (2016)
Isotopic Analysis of Sporocarp Protein and Structural Material Improves Resolution of Fungal Carbon SourcesFrontiers in Microbiology, 7
E Lipkow (2005)
Faunistisch-Ökologische Mitteilungen, 8
S. Trudell, P. Rygiewicz, R. Edmonds (2004)
Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old-growth conifer forests.The New phytologist, 164 2
M. Deniro, S. Epstein (1978)
Influence of Diet On the Distribtion of Nitrogen Isotopes in Animals
Andy Taylor, P. Fransson, P. Högberg, M. Högberg, A. Plamboeck (2003)
Species level patterns in 13 C and 15 N abundance of ectomycorrhizal and saprotrophic fungal sporocarps.The New phytologist, 159 3
A. Tunlid, D. Floudas, Michiel Beeck, Tao Wang, Per Persson (2022)
Decomposition of soil organic matter by ectomycorrhizal fungi: Mechanisms and consequences for organic nitrogen uptake and soil carbon stabilization, 5
A. Tiunov, E. Semenina, A. Aleksandrova, S. Tsurikov, A. Anichkin, Y. Novozhilov (2015)
Stable isotope composition (δ(13)C and δ(15)N values) of slime molds: placing bacterivorous soil protozoans in the food web context.Rapid communications in mass spectrometry : RCM, 29 16
E. Hobbie, F. Sánchez, P. Rygiewicz (2012)
Controls of isotopic patterns in saprotrophic and ectomycorrhizal fungiSoil Biology & Biochemistry, 48
C. Perini, A. Laganà, E. Salerni, C. Barluzzi, V. Dominicis (1999)
Mycofloristic investigations in the geothermal area of Travale-Radicondoli (Tuscany, Central Italy), 54
M Maraun (2003)
Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substratesEur J Soil Biol, 39
R. Koide, Jori Sharda, J. Herr, Glenna Malcolm (2008)
Ectomycorrhizal fungi and the biotrophy-saprotrophy continuum.The New phytologist, 178 2
Ann-Mari Fransson, I. Valeur, H. Wallander (2004)
The wood-decaying fungus Hygrophoropsis aurantiaca increases P availability in acid forest humus soil, while N addition hampers this effectSoil Biology & Biochemistry, 36
Andrew Taylor, L. Högbom, M. Högberg, A. Lyon, T. Näsholm, P. Högberg (1997)
Natural 15 N abundance in fruit bodies of ectomycorrhizal fungi from boreal forests.The New phytologist, 136 4
Shunfeng Li, Anjian Wang, Lina Liu, Guangrui Tian, S. Wei, Fangfang Xu (2018)
Evaluation of nutritional values of shiitake mushroom (Lentinus edodes) stipesJournal of Food Measurement and Characterization, 12
Alexis LeFait, J. Gailey, Gavin Kernaghan (2019)
Fungal species selection during ectomycorrhizal grazing by CollembolaSymbiosis, 78
K. Clemmensen, A. Bahr, O. Ovaskainen, A. Dahlberg, A. Ekblad, H. Wallander, J. Stenlid, R. Finlay, D. Wardle, Björn Lindahl (2013)
Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal ForestScience, 339
E. Burrill, J. Worrall, P. Wargo, S. Stehman (1999)
Effects of defoliation and cutting in eastern oak forests on Armillaria spp. and a competitor, Megacollybia platyphyllaCanadian Journal of Forest Research, 29
E. Hobbie, A. Grandy, M. Harmon, L. Diepen (2020)
Isotopic and compositional evidence for carbon and nitrogen dynamics during wood decomposition by saprotrophic fungiFungal Ecology
R. Irizarry (2019)
ggplot2Introduction to Data Science
AG Zuev (2022)
Stable Isotope Fractionation (13C/12C and 15N/14N) in Macromycetes of the Oligotrophic Upland Swamp Starosel’skii MokhMosc Univ Soil Sci Bull, 77
A. Kohzu, T. Yoshioka, T. Ando, M. Takahashi, K. Koba, E. Wada (1999)
Natural 13C and 15N abundance of field‐collected fungi and their ecological implicationsNew Phytologist, 144
A Zuev (2019)
Stable Isotope Trophic Fractionation (13C/12C and 15N/14N) in Mycophagous Diptera LarvaeBiology Bull, 46
A. Kudrin, A. Zuev, A. Taskaeva, T. Konakova, A. Kolesnikova, I. Gruzdev, D. Gabov, E. Yakovleva, A. Tiunov (2021)
Spruce girdling decreases abundance of fungivorous soil nematodes in a boreal forestSoil Biology & Biochemistry, 155
Melanie Pollierer, S. Scheu, A. Tiunov (2020)
Isotope analyses of amino acids in fungi and fungal feeding Diptera larvae allow differentiating ectomycorrhizal and saprotrophic fungi‐based food chainsFunctional Ecology
EP Feofilova (2012)
Fungal spores: Dormancy, germination, chemical composition, and role in biotechnology (review)Appl Biochem Microbiol, 48
A. Zuev, M. Khmeleva, A. Tiunov (2019)
Collecting fungal mycelium using in-growth mesh bags: Effects of the sand particle size and seasonalityPedobiologia
N Cohen (2014)
Chemical Composition and Nutritional and Medicinal Value of Fruit Bodies and Submerged Cultured Mycelia of Culinary-Medicinal Higher Basidiomycetes MushroomsInt J Med Mushrooms, 16
A. Potapov, A. Tiunov (2016)
Stable isotope composition of mycophagous collembolans versus mycotrophic plants: Do soil invertebrates feed on mycorrhizal fungi?Soil Biology & Biochemistry, 93
A. Zuev, M. Potapov, A. Tiunov, A. Saraeva (2023)
Root trenching and stable isotope analysis uncover trophic links of euedaphic collembola species to mycorrhizal mycelium in pine forestsEuropean Journal of Soil Biology
D. Godbold, M. Hoosbeek, M. Lukac, M. Cotrufo, Ivan Janssens, R. Ceulemans, A. Polle, E. Velthorst, G. Scarascia-Mugnozza, P. Angelis, F. Miglietta, A. Peressotti (2006)
Mycorrhizal Hyphal Turnover as a Dominant Process for Carbon Input into Soil Organic MatterPlant and Soil, 281
H. Wallander, L. Nilsson, David Hagerberg, E. Bååth (2001)
Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field.The New phytologist, 151 3
Melanie Pollierer, S. Scheu (2021)
Stable isotopes of amino acids indicate that soil decomposer microarthropods predominantly feed on saprotrophic fungiEcosphere
E. Hobbie, P. Högberg (2012)
Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics.The New phytologist, 196 2
R. Agerer (2001)
Exploration types of ectomycorrhizaeMycorrhiza, 11
A Mikusinska (2013)
Response of ectomycorrhizal extramatrical mycelium production and isotopic composition to in-growth bag size and soil faunaSoil Biol Biochem, 66
S. Frey (2019)
Mycorrhizal Fungi as Mediators of Soil Organic Matter DynamicsAnnual Review of Ecology, Evolution, and Systematics
H. Wallander, A. Ekblad, D. Godbold, David Johnson, A. Bahr, P. Baldrian, R. Björk, B. Kieliszewska-Rokicka, R. Kjøller, H. Kraigher, C. Plassard, M. Rudawska (2013)
Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils : A reviewSoil Biology & Biochemistry, 57
G. Gebauer, Andy Taylor (1999)
15N natural abundance in fruit bodies of different functional groups of fungi in relation to substrate utilizationNew Phytologist, 142
S. Bartnicki-García (1968)
Cell wall chemistry, morphogenesis, and taxonomy of fungi.Annual review of microbiology, 22
Sarah Bluhm, A. Potapov, J. Shrubovych, Silke Ammerschubert, A. Polle, S. Scheu (2019)
Protura are unique: first evidence of specialized feeding on ectomycorrhizal fungi in soil invertebratesBMC Ecology, 19
B. Adamczyk, Outi‐Maaria Sietiö, C. Biasi, J. Heinonsalo (2019)
Interaction between tannins and fungal necromass stabilizes fungal residues in boreal forest soils.The New phytologist, 223 1
H. Wallander, H. Göransson, U. Rosengren (2004)
Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest typesOecologia, 139
J. Adamczyk (1995)
Ecological groups of macrofungi in beech forests on Czȩestochowa Upland, Southern PolandFeddes Repertorium, 106
Melanie Pollierer, J. Dyckmans, S. Scheu, Dominique Haubert (2012)
Carbon flux through fungi and bacteria into the forest soil animal food web as indicated by compound-specific 13C fatty acid analysisFunctional Ecology, 26
M Makarov (2019)
The Role of Mycorrhiza in Transformation of Nitrogen Compounds in Soil and Nitrogen Nutrition of Plants: A ReviewEurasian Soil Sci, 52
Ning Zhang, Haixia Chen, Yu Zhang, Lishuai Ma, Xu-dong Xu (2013)
Comparative studies on chemical parameters and antioxidant properties of stipes and caps of shiitake mushroom as affected by different drying methods.Journal of the science of food and agriculture, 93 12
M. Kramer, K. Lajtha, A. Aufdenkampe (2017)
Depth trends of soil organic matter C:N and 15N natural abundance controlled by association with mineralsBiogeochemistry, 136
A. Gunina, M. Dippold, B. Glaser, Y. Kuzyakov (2017)
Turnover of microbial groups and cell components in soil: 13 C analysis of cellular biomarkersBiogeosciences, 14
Lu-Min Vaario, S. Sah, M. Norisada, M. Narimatsu, N. Matsushita (2018)
Tricholoma matsutake may take more nitrogen in the organic form than other ectomycorrhizal fungi for its sporocarp development: the isotopic evidenceMycorrhiza, 29
E. Hobbie, T. Horton (2007)
Evidence that saprotrophic fungi mobilise carbon and mycorrhizal fungi mobilise nitrogen during litter decomposition.The New phytologist, 173 3
A. Ekblad, A. Mikusinska, G. Ågren, L. Menichetti, H. Wallander, R. Vilgalys, A. Bahr, Ulrika Eriksson (2016)
Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilization.The New phytologist, 211 3
A. Kohzu, T. Tateishi, A. Yamada, K. Koba, E. Wada (2000)
Nitrogen isotope fractionation during nitrogen transport from ectomycorrhizal fungi, Suillus granulatus, to the host plant, Pinus densifloraSoil Science and Plant Nutrition, 46
M Bonkowski (2000)
Food preferences of earthworms for soil fungiPedobiologia, 44
P. Högberg, M. Högberg, Maud Quist, A. Ekblad, T. Näsholm (1999)
Nitrogen isotope fractionation during nitrogen uptake by ectomycorrhizal and non-mycorrhizal Pinus sylvestrisNew Phytologist, 142
Preetisri Baskaran, A. Ekblad, Laure Soucémarianadin, R. Hyvönen, J. Schleucher, Björn Lindahl (2019)
Nitrogen dynamics of decomposing Scots pine needle litter depends on colonizing fungal species.FEMS microbiology ecology, 95 6
L. Tedersoo, Triin Naadel, M. Bahram, K. Pritsch, F. Buegger, M. Leal, U. Kõljalg, K. Põldmaa (2012)
Enzymatic activities and stable isotope patterns of ectomycorrhizal fungi in relation to phylogeny and exploration types in an afrotropical rain forest.The New phytologist, 195 4
E. Hobbie, P. Rygiewicz, Mark Johnson, A. Moldenke (2007)
13C and 15N in microarthropods reveal little response of Douglas‐fir ecosystems to climate changeGlobal Change Biology, 13
A. Potapov, A. Tiunov, S. Scheu (2018)
Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope compositionBiological Reviews, 94
Christopher Fernandez, K. Heckman, R. Kolka, P. Kennedy (2019)
Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming.Ecology letters, 22 3
M. Henn, I. Chapela (2001)
Ecophysiology of 13C and 15N isotopic fractionation in forest fungi and the roots of the saprotrophic-mycorrhizal divideOecologia, 128
Masoumeh Chahartaghi, R. Langel, S. Scheu, Liliane Ruess (2005)
Feeding guilds in Collembola based on nitrogen stable isotope ratiosSoil Biology & Biochemistry, 37
Mycorrhizal and saprotrophic macromycetes contribute strongly to the carbon and nitrogen cycles of forest ecosystems, often studied by tracing stable isotope composition of carbon and nitrogen. The phenomenon of the saprotrophic-mycorrhizal divide highlights the difference in the stable isotope composition of fruiting bodies of mycorrhizal and saprotrophic fungi. Much less is known about the isotopic composition of the mycelium, which plays an important role in the formation of the soil organic matter and fuels the fungal trophic channel in soil food webs. In this study, we assessed whether the saprotrophic-mycorrhizal divide in the natural δ13С and δ15N values can be traced throughout entire fungal organisms. This hypothesis was tested using 16 species of ectomycorrhizal and six species of saprotrophic basidiomycetous fungi. We showed that not only fruiting bodies, but also the mycelium of ectomycorrhizal and saprotrophic fungi differs in the δ13C and δ15N values. In both ectomycorrhizal and saprotrophic fungi, the δ13C and δ15N values increased from mycelium to hymenophores and correlated positively with the total N content in the corresponding tissues. The differences between ectomycorrhizal and saprotrophic mycelium can be used to reconstruct the fungal-driven belowground carbon and nitrogen allocation, and the contribution of saprotrophic and mycorrhizal fungi to soil food webs.
Mycorrhiza – Springer Journals
Published: Apr 1, 2025
Keywords: Ectomycorrhizal fungi; Saprotrophic fungi; Stable isotopes; Fungal hyphae; Forest soil
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.