Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle

Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle Temperature warming and the increased frequency of climatic anomalies are expected to trigger bark beetle outbreaks with potential severe consequences on forest ecosystems. We characterized the combined effects of climatic factors and density-dependent feedbacks on forest damage caused by Ips typographus (L.), one of the most destructive pests of European spruce forests, and tested whether climate modified the interannual variation in the altitudinal outbreak range of the species. We analyzed a 16-year time-series from the European Alps of timber loss in Picea abies Karsten forests due to I. typographus attacks and used a discrete population model and an information theoretic approach to compare multiple competing hypotheses. The occurrence of dry summers combined with warm temperatures appeared as the main abiotic triggers of severity of outbreaks. We also found an endogenous negative feedback with a 2-year lag suggesting a potential important role of natural enemies. Forest damage per hectare averaged 7-fold higher where spruce was planted in sites warmer than those within its historical climatic range. Dry summers, but not temperature, was related to upward shifts in the altitudinal outbreak range. Considering the potential increased susceptibility of spruce forests to insect outbreaks due to climate change, there is growing value in mitigating these effects through sustainable forest management, which includes avoiding the promotion of spruce outside its historical climatic range. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Climatic Change Springer Journals

Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle

Loading next page...
 
/lp/springer-journals/climate-affects-severity-and-altitudinal-distribution-of-outbreaks-in-9vNSmDcJ08

References (61)

Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Earth Sciences; Atmospheric Sciences; Climate Change/Climate Change Impacts
ISSN
0165-0009
eISSN
1573-1480
DOI
10.1007/s10584-012-0463-z
Publisher site
See Article on Publisher Site

Abstract

Temperature warming and the increased frequency of climatic anomalies are expected to trigger bark beetle outbreaks with potential severe consequences on forest ecosystems. We characterized the combined effects of climatic factors and density-dependent feedbacks on forest damage caused by Ips typographus (L.), one of the most destructive pests of European spruce forests, and tested whether climate modified the interannual variation in the altitudinal outbreak range of the species. We analyzed a 16-year time-series from the European Alps of timber loss in Picea abies Karsten forests due to I. typographus attacks and used a discrete population model and an information theoretic approach to compare multiple competing hypotheses. The occurrence of dry summers combined with warm temperatures appeared as the main abiotic triggers of severity of outbreaks. We also found an endogenous negative feedback with a 2-year lag suggesting a potential important role of natural enemies. Forest damage per hectare averaged 7-fold higher where spruce was planted in sites warmer than those within its historical climatic range. Dry summers, but not temperature, was related to upward shifts in the altitudinal outbreak range. Considering the potential increased susceptibility of spruce forests to insect outbreaks due to climate change, there is growing value in mitigating these effects through sustainable forest management, which includes avoiding the promotion of spruce outside its historical climatic range.

Journal

Climatic ChangeSpringer Journals

Published: Apr 28, 2012

There are no references for this article.