Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol

High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195°C, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50°C, the optimal temperature of enzymes, in order to obtain better mixing condition due to some liquefaction. In the second step more cellulases were added in combination with dried baker's yeast (Saccharomyces cerevisiae) at 30°C. The phenols (0.4–0.5 g/L) and carboxylic acids (4.6–5.9 g/L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest ethanol concentration of 52 g/L (6 vol.%) was achieved, which exceeds the technical and economical limit of the industrial‐scale alcohol distillation. The SSF results showed that the cellulose in pretreated corn stover can be efficiently fermented to ethanol with up to 15% DM concentration. A further increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2. © 2004 Wiley Periodicals, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biotechnology and Bioengineering Wiley

High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol

Loading next page...
 
/lp/wiley/high-solid-simultaneous-saccharification-and-fermentation-of-wet-7rBl4ysRIv

References (38)

Publisher
Wiley
Copyright
Copyright © 2004 Wiley Periodicals, Inc., A Wiley Company
ISSN
0006-3592
eISSN
1097-0290
DOI
10.1002/bit.20222
pmid
15470714
Publisher site
See Article on Publisher Site

Abstract

In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195°C, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50°C, the optimal temperature of enzymes, in order to obtain better mixing condition due to some liquefaction. In the second step more cellulases were added in combination with dried baker's yeast (Saccharomyces cerevisiae) at 30°C. The phenols (0.4–0.5 g/L) and carboxylic acids (4.6–5.9 g/L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest ethanol concentration of 52 g/L (6 vol.%) was achieved, which exceeds the technical and economical limit of the industrial‐scale alcohol distillation. The SSF results showed that the cellulose in pretreated corn stover can be efficiently fermented to ethanol with up to 15% DM concentration. A further increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2. © 2004 Wiley Periodicals, Inc.

Journal

Biotechnology and BioengineeringWiley

Published: Dec 5, 2004

Keywords: simultaneous saccharification and fermentation (SSF); corn stover; ethanol fermentation; high solid concentration

There are no references for this article.