Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Abstract Analytical electron microscopy of representative smectites from soils and sediments revealed that K was present in significant proportions. It was the major interlayer cation in soils from pelitic rocks, continental and marine sediments, independent of their diagenetic grade. Sodium was predominant only in soils from basic rock. Fluvial sediments contained smectites with both kinds of interlayer compositions. The octahedral composition of each sample ranged widely, covering various fields of dioctahedral smectites. The most important trend was the substitution of Al by Fe and Mg; the chemistry of each smectite particle was determined by the parent mineral from which it formed. The real interlayer composition has important implications for the diagenetic smectite-illite transformation. When considering a typical K content, the smectite-illite reaction, with chlorite and quartz as subproducts, needs only 0.21 K atoms. For more K-rich compositions, a reaction is possible without an external supply of K.
Clay Minerals – de Gruyter
Published: Sep 1, 2000
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.