Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Elastic laboratory measurements and modeling of saturated basalts

Elastic laboratory measurements and modeling of saturated basalts Understanding the elastic behavior of basalt is important to seismically monitor volcanoes, subsea basalts, and carbon sequestration in basalt. We estimate the elastic properties of basalt samples from the Snake River Plain, Idaho, at ultrasonic (0.8 MHz) and seismic (2–300 Hz) frequencies. To test the sensitivity of seismic waves to the fluid content in the pore structure, measurements are performed at three saturation conditions: saturated with liquid CO2, water, and dry. When CO2 replaces water, the P‐wave velocity drops, on average, by 10%. Vesicles and cracks, observed in the rock microstructure, control the relaxation of pore‐fluid pressures in the rock as a wave propagates. The bulk and shear moduli of basalts saturated with liquid CO2 are not frequency dependent, suggesting that fluid pore pressures are in equilibrium between 2 Hz and 0.8 MHz. However, when samples are water saturated, the bulk modulus of the rock is frequency dependent. Modeling with Gassmann's equations predicts the measured saturated rock bulk modulus for all fluids for frequencies below 20 Hz but underpredicts the water‐saturated basalt bulk modulus for frequencies greater than 20 Hz. The most likely reason is that the pore‐fluid pressures are unrelaxed. Instead, the ultrasonic frequency rock moduli are modeled with high‐frequency elastic theories of squirt flow and Kuster–Toksöz (KT). Although KT's model is based on idealized pore shapes, a combination of spheres (vesicles) and penny‐shaped cracks (fractures) interpreted and quantified from petrographical data predicts the ultrasonic dry and saturated rock moduli for the measured basalts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Solid Earth Wiley

Elastic laboratory measurements and modeling of saturated basalts

Loading next page...
 
/lp/wiley/elastic-laboratory-measurements-and-modeling-of-saturated-basalts-60I6T2NHTc

References (61)

Publisher
Wiley
Copyright
©2013. American Geophysical Union. All Rights Reserved.
ISSN
2169-9313
eISSN
2169-9356
DOI
10.1002/jgrb.50090
Publisher site
See Article on Publisher Site

Abstract

Understanding the elastic behavior of basalt is important to seismically monitor volcanoes, subsea basalts, and carbon sequestration in basalt. We estimate the elastic properties of basalt samples from the Snake River Plain, Idaho, at ultrasonic (0.8 MHz) and seismic (2–300 Hz) frequencies. To test the sensitivity of seismic waves to the fluid content in the pore structure, measurements are performed at three saturation conditions: saturated with liquid CO2, water, and dry. When CO2 replaces water, the P‐wave velocity drops, on average, by 10%. Vesicles and cracks, observed in the rock microstructure, control the relaxation of pore‐fluid pressures in the rock as a wave propagates. The bulk and shear moduli of basalts saturated with liquid CO2 are not frequency dependent, suggesting that fluid pore pressures are in equilibrium between 2 Hz and 0.8 MHz. However, when samples are water saturated, the bulk modulus of the rock is frequency dependent. Modeling with Gassmann's equations predicts the measured saturated rock bulk modulus for all fluids for frequencies below 20 Hz but underpredicts the water‐saturated basalt bulk modulus for frequencies greater than 20 Hz. The most likely reason is that the pore‐fluid pressures are unrelaxed. Instead, the ultrasonic frequency rock moduli are modeled with high‐frequency elastic theories of squirt flow and Kuster–Toksöz (KT). Although KT's model is based on idealized pore shapes, a combination of spheres (vesicles) and penny‐shaped cracks (fractures) interpreted and quantified from petrographical data predicts the ultrasonic dry and saturated rock moduli for the measured basalts.

Journal

Journal of Geophysical Research: Solid EarthWiley

Published: Jan 1, 2013

Keywords: ; ; ; ;

There are no references for this article.