Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes

Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous... Insect capture and digestion contribute substantially to the nitrogen budget of carnivorous plants. In Nepenthes , insect‐derived nitrogenous compounds are imported from the pitcher fluid and transported throughout the plant via the vascular tissue to support growth. Import and distribution of nutrients may require transmembrane nitrogen transporters. Representatives of three classes of genes encoding transporters for the nitrogenous compounds ammonium, amino acids and peptides were identified in Nepenthes pitchers. The expression at the cellular level of an ammonium transporter gene, three amino acid transporter genes, and one peptide transporter gene were investigated in the insect trapping organs of Nepenthes . Expression of the ammonium transporter gene NaAMT1 was detected in the head cells of digestive glands in the lower part of the pitcher where NaAMT1 may function in ammonium uptake from the pitcher fluid. One amino acid transporter gene, NaAAP1 , was expressed in bundle sheath cells surrounding the vascular tissue. To understand the locations where transmembrane transport could be required within the pitcher, symplasmic and apoplasmic continuity was probed using fluorescent dyes. Symplasmic connections were not found between cortical cells and vascular bundles. Therefore, the amino acid transporter encoded by NaAAP1 may be involved in transport of amino acids into the vascular tissue. In contrast, expression of the peptide transporter gene NaNTR1 was detected in phloem cells of the vascular tissue within pitchers. NaNTR1 may function in the export of nitrogen from the pitcher by loading peptides into the phloem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Plant Journal Wiley

Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes

Loading next page...
 
/lp/wiley/transporters-for-ammonium-amino-acids-and-peptides-are-expressed-in-5xb5Qx4M2o

References (35)

Publisher
Wiley
Copyright
Copyright © 1999 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0960-7412
eISSN
1365-313X
DOI
10.1046/j.1365-313X.1999.00414.x
Publisher site
See Article on Publisher Site

Abstract

Insect capture and digestion contribute substantially to the nitrogen budget of carnivorous plants. In Nepenthes , insect‐derived nitrogenous compounds are imported from the pitcher fluid and transported throughout the plant via the vascular tissue to support growth. Import and distribution of nutrients may require transmembrane nitrogen transporters. Representatives of three classes of genes encoding transporters for the nitrogenous compounds ammonium, amino acids and peptides were identified in Nepenthes pitchers. The expression at the cellular level of an ammonium transporter gene, three amino acid transporter genes, and one peptide transporter gene were investigated in the insect trapping organs of Nepenthes . Expression of the ammonium transporter gene NaAMT1 was detected in the head cells of digestive glands in the lower part of the pitcher where NaAMT1 may function in ammonium uptake from the pitcher fluid. One amino acid transporter gene, NaAAP1 , was expressed in bundle sheath cells surrounding the vascular tissue. To understand the locations where transmembrane transport could be required within the pitcher, symplasmic and apoplasmic continuity was probed using fluorescent dyes. Symplasmic connections were not found between cortical cells and vascular bundles. Therefore, the amino acid transporter encoded by NaAAP1 may be involved in transport of amino acids into the vascular tissue. In contrast, expression of the peptide transporter gene NaNTR1 was detected in phloem cells of the vascular tissue within pitchers. NaNTR1 may function in the export of nitrogen from the pitcher by loading peptides into the phloem.

Journal

The Plant JournalWiley

Published: Mar 1, 1999

There are no references for this article.