Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Mutations causing defects in the biosynthesis and response to gibberellins, abscisic acid and phytochrome B do not inhibit vernalization in Arabidopsis fca-1

Mutations causing defects in the biosynthesis and response to gibberellins, abscisic acid and...  The roles of gibberellins, abscisic acid and phytochrome B in the vernalization response were investigated by combining mutations causing defects in their biosynthesis and response with the Arabidopsis thaliana (L.) Heynh. fca-1 mutation. The fca-1 mutation confers a very late-flowering phenotype which can be reversed to wild-type flowering if the seedlings are vernalized. Vernalization was unaffected in ga1-3, gai, abi1-1, abi2-1, abi3-1 and phyB-1 backgrounds, suggesting that gibberellin action mediated via GA1 and GAI, abscisic acid action mediated through ABI1 and ABI2, and phytochrome B, function independently of vernalization. However, the mutations did interact with fca-1 to change flowering time in the absence of vernalization. The abi1 fca-1 and abi2 fca-1 double mutants flowered earlier than fca-1 implying a role for abscisic acid in floral repression. Combination of ga1-3 or gai with fca-1 unexpectedly resulted in opposite interactions, with gai partially suppressing the late flowering of fca-1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Planta Springer Journals

Mutations causing defects in the biosynthesis and response to gibberellins, abscisic acid and phytochrome B do not inhibit vernalization in Arabidopsis fca-1

Planta , Volume 210 (4) – Mar 17, 2000

Loading next page...
 
/lp/springer-journals/mutations-causing-defects-in-the-biosynthesis-and-response-to-5JgutsezXY

References (0)

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Springer Journals
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Plant Sciences; Agriculture; Ecology; Forestry
ISSN
0032-0935
eISSN
1432-2048
DOI
10.1007/s004250050059
pmid
10787063
Publisher site
See Article on Publisher Site

Abstract

 The roles of gibberellins, abscisic acid and phytochrome B in the vernalization response were investigated by combining mutations causing defects in their biosynthesis and response with the Arabidopsis thaliana (L.) Heynh. fca-1 mutation. The fca-1 mutation confers a very late-flowering phenotype which can be reversed to wild-type flowering if the seedlings are vernalized. Vernalization was unaffected in ga1-3, gai, abi1-1, abi2-1, abi3-1 and phyB-1 backgrounds, suggesting that gibberellin action mediated via GA1 and GAI, abscisic acid action mediated through ABI1 and ABI2, and phytochrome B, function independently of vernalization. However, the mutations did interact with fca-1 to change flowering time in the absence of vernalization. The abi1 fca-1 and abi2 fca-1 double mutants flowered earlier than fca-1 implying a role for abscisic acid in floral repression. Combination of ga1-3 or gai with fca-1 unexpectedly resulted in opposite interactions, with gai partially suppressing the late flowering of fca-1.

Journal

PlantaSpringer Journals

Published: Mar 17, 2000

There are no references for this article.