Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Utilization of Photosynthates for Growth, Respiration, and Storage in Tops and Roots of Lolium multiflorum

Utilization of Photosynthates for Growth, Respiration, and Storage in Tops and Roots of Lolium... Lolium multiflorum L. was grown in pots in controlled environments. CO2‐exchange rates were continuously measured on two pots during 46 and 52 days, respectively, separating between tops and roots. After 20 days, the plants were entirely defoliated and the plants were then followed during the regrowth period. During the experiment, alternating 2–3 day periods of high and low irradiance were applied. Analogously treated plants were frequently harvested to obtain the distribution of assimilates between tops and roots. From integration of CO2‐exchange rates, diurnal photosynthesis and respiration were obtained, and utilization of assimilates was analysed. The respiration associated with the synthesis of new structural material (growth respiration) was dependent on assimilates originating from both the current and the preceding 24 h diurnal cycles. The amount of new structural material synthesized during the current 24 h diurnal cycle was estimated from the relative contribution of assimilates accumulated from the preceding and the current 24 h and diurnal cycles to growth respiration of the current 24 h. From this approximation, the respiratory components connected to synthesis of new structural material and to maintenance of already established material were found. Growth and maintenance respirations of the tops were alike during the predefoliation and the regrowth periods. For the roots, however, growth respiration was higher and maintenance respiration lower in the regrowth period. The difference between daily integrated CO2‐exchange and the amount converted into new structural material was assumed to be the daily change in assimilates stored. On the first day of a period of high irradiance, the assimilation per unit leaf weight was higher than on the following day of high irradiance, and an accumulation of storage material took place. On the first day of a period of low irradiance, the assimilation per unit leaf weight was lower than on the following day of low irradiance, and there was a depletion of assimilates stored. These effects were most pronounced during the regrowth period, indicating a change in the metabolic sink demand. This indicates a strong feedback mechanism between sources and sinks, in the sense that accumulation of products will inhibit assimilation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physiologia Plantarum Wiley

Utilization of Photosynthates for Growth, Respiration, and Storage in Tops and Roots of Lolium multiflorum

Physiologia Plantarum , Volume 42 (1) – Jan 1, 1978

Loading next page...
 
/lp/wiley/utilization-of-photosynthates-for-growth-respiration-and-storage-in-2ohQ83gp9W

References (22)

Publisher
Wiley
Copyright
Copyright © 1978 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0031-9317
eISSN
1399-3054
DOI
10.1111/j.1399-3054.1978.tb01530.x
Publisher site
See Article on Publisher Site

Abstract

Lolium multiflorum L. was grown in pots in controlled environments. CO2‐exchange rates were continuously measured on two pots during 46 and 52 days, respectively, separating between tops and roots. After 20 days, the plants were entirely defoliated and the plants were then followed during the regrowth period. During the experiment, alternating 2–3 day periods of high and low irradiance were applied. Analogously treated plants were frequently harvested to obtain the distribution of assimilates between tops and roots. From integration of CO2‐exchange rates, diurnal photosynthesis and respiration were obtained, and utilization of assimilates was analysed. The respiration associated with the synthesis of new structural material (growth respiration) was dependent on assimilates originating from both the current and the preceding 24 h diurnal cycles. The amount of new structural material synthesized during the current 24 h diurnal cycle was estimated from the relative contribution of assimilates accumulated from the preceding and the current 24 h and diurnal cycles to growth respiration of the current 24 h. From this approximation, the respiratory components connected to synthesis of new structural material and to maintenance of already established material were found. Growth and maintenance respirations of the tops were alike during the predefoliation and the regrowth periods. For the roots, however, growth respiration was higher and maintenance respiration lower in the regrowth period. The difference between daily integrated CO2‐exchange and the amount converted into new structural material was assumed to be the daily change in assimilates stored. On the first day of a period of high irradiance, the assimilation per unit leaf weight was higher than on the following day of high irradiance, and an accumulation of storage material took place. On the first day of a period of low irradiance, the assimilation per unit leaf weight was lower than on the following day of low irradiance, and there was a depletion of assimilates stored. These effects were most pronounced during the regrowth period, indicating a change in the metabolic sink demand. This indicates a strong feedback mechanism between sources and sinks, in the sense that accumulation of products will inhibit assimilation.

Journal

Physiologia PlantarumWiley

Published: Jan 1, 1978

There are no references for this article.