Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Microbially supported synthesis of catalytically active bimetallic Pd‐Au nanoparticles

Microbially supported synthesis of catalytically active bimetallic Pd‐Au nanoparticles Bimetallic nanoparticles are considered the next generation of nanocatalysts with increased stability and catalytic activity. Bio‐supported synthesis of monometallic nanoparticles has been proposed as an environmentally friendly alternative to the conventional chemical and physical protocols. In this study we synthesize bimetallic bio‐supported Pd‐Au nanoparticles for the first time using microorganisms as support material. The synthesis involved two steps: (1) Formation of monometallic bio‐supported Pd(0) and Au(0) nanoparticles on the surface of Cupriavidus necator cells, and (2) formation of bimetallic bio‐supported nanoparticles by reduction of either Au(III) or Pd(II) on to the nanoparticles prepared in step one. Bio‐supported monometallic Pd(0) or Au(0) nanoparticles were formed on the surface of C. necator by reduction of Pd(II) or Au(III) with formate. Addition of Au(III) or Pd(II) to the bio‐supported particles resulted in increased particle size. UV–Vis spectrophotometry and HR‐TEM analyses indicated that the previously monometallic nanoparticles had become fully or partially covered by Au(0) or Pd(0), respectively. Furthermore, Energy Dispersive Spectrometry (EDS) and Fast Fourier Transformation (FFT) analyses confirmed that the nanoparticles indeed were bimetallic. The bimetallic nanoparticles did not have a core‐shell structure, but were superior to monometallic particles at reducing p‐nitrophenol to p‐aminophenol. Hence, formation of microbially supported nanoparticles may be a cheap and environmentally friendly approach for production of bimetallic nanocatalysts. Biotechnol. Bioeng. 2012;109: 45–52. © 2011 Wiley Periodicals, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biotechnology and Bioengineering Wiley

Microbially supported synthesis of catalytically active bimetallic Pd‐Au nanoparticles

Loading next page...
 
/lp/wiley/microbially-supported-synthesis-of-catalytically-active-bimetallic-pd-2j9OUrOgEU

References (37)

Publisher
Wiley
Copyright
Copyright © 2011 Wiley Periodicals, Inc.
ISSN
0006-3592
eISSN
1097-0290
DOI
10.1002/bit.23293
pmid
21830201
Publisher site
See Article on Publisher Site

Abstract

Bimetallic nanoparticles are considered the next generation of nanocatalysts with increased stability and catalytic activity. Bio‐supported synthesis of monometallic nanoparticles has been proposed as an environmentally friendly alternative to the conventional chemical and physical protocols. In this study we synthesize bimetallic bio‐supported Pd‐Au nanoparticles for the first time using microorganisms as support material. The synthesis involved two steps: (1) Formation of monometallic bio‐supported Pd(0) and Au(0) nanoparticles on the surface of Cupriavidus necator cells, and (2) formation of bimetallic bio‐supported nanoparticles by reduction of either Au(III) or Pd(II) on to the nanoparticles prepared in step one. Bio‐supported monometallic Pd(0) or Au(0) nanoparticles were formed on the surface of C. necator by reduction of Pd(II) or Au(III) with formate. Addition of Au(III) or Pd(II) to the bio‐supported particles resulted in increased particle size. UV–Vis spectrophotometry and HR‐TEM analyses indicated that the previously monometallic nanoparticles had become fully or partially covered by Au(0) or Pd(0), respectively. Furthermore, Energy Dispersive Spectrometry (EDS) and Fast Fourier Transformation (FFT) analyses confirmed that the nanoparticles indeed were bimetallic. The bimetallic nanoparticles did not have a core‐shell structure, but were superior to monometallic particles at reducing p‐nitrophenol to p‐aminophenol. Hence, formation of microbially supported nanoparticles may be a cheap and environmentally friendly approach for production of bimetallic nanocatalysts. Biotechnol. Bioeng. 2012;109: 45–52. © 2011 Wiley Periodicals, Inc.

Journal

Biotechnology and BioengineeringWiley

Published: Jan 1, 2012

There are no references for this article.