Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Review of the Pilbara Craton and Fortescue Basin, Western Australia: Crustal evolution providing environments for early life

Review of the Pilbara Craton and Fortescue Basin, Western Australia: Crustal evolution providing... The oldest part of the Pilbara Craton is 3.80–3.55 Ga crust. Between 3.53 and 3.22 Ga, mantle plume activity resulted in eight successive volcanic cycles forming the Pilbara Supergroup. Large volumes of granitic magma were intruded during the same period. By 3.22 Ga, a thick continental crust, the East Pilbara Terrane, had been established. Between 3.22 and 3.16 Ga, rifting of the East Pilbara Terrane separated off two additional terranes (Karratha and Kurrana), with intervening basins of oceanic crust. After 3.16 Ga, the three terranes began to converge, resulting in both obduction of oceanic crust (Regal Terrane) and, in another area, subduction to form a 3.13 Ga island arc (Sholl Terrane). At 3.07 Ga, the Karratha, Regal, and Sholl Terranes collided to form the West Pilbara Superterrane, and this collided with the East Pilbara Terrane. The 3.05–2.93 Ga De Grey Superbasin was deposited as a succession of basins: Gorge Creek, Whim Creek, Mallina, and Mosquito Creek. Eventual closure of the basins, between 2.94 and 2.93 Ga, formed two separate orogenic belts on either side of the East Pilbara Terrane. Post‐orogenic granites were intruded between 2.89 and 2.83 Ga. The 2.78–2.63 Ga Fortescue Basin developed in four stages: (i) rifting of the Pilbara Craton; (ii) folding and erosion; (iii) large igneous province (LIP) volcanism; and (iv) marine sedimentation on a passive margin. A review of all known evidence for early life in the Pilbara Craton is provided. In hydrothermal settings, most of the evidence occurs as filamentous and spheroidal microfossils, organic carbon, microbial mats, and rare stromatolites. By contrast, shallow‐water marine sedimentary rocks contain a diverse range of stromatolites, and microbial mats. Lacustrine and shallow‐water marine carbonate rocks in the Fortescue Basin contain abundant and morphologically diverse stromatolites, widespread microbial mats, and organic carbon. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Island Arc Wiley

Review of the Pilbara Craton and Fortescue Basin, Western Australia: Crustal evolution providing environments for early life

Island Arc , Volume 21 (1) – Mar 1, 2012

Loading next page...
 
/lp/wiley/review-of-the-pilbara-craton-and-fortescue-basin-western-australia-2cM8kMeGs1

References (191)

Publisher
Wiley
Copyright
© 2012 Blackwell Publishing Asia Pty Ltd
ISSN
1038-4871
eISSN
1440-1738
DOI
10.1111/j.1440-1738.2011.00783.x
Publisher site
See Article on Publisher Site

Abstract

The oldest part of the Pilbara Craton is 3.80–3.55 Ga crust. Between 3.53 and 3.22 Ga, mantle plume activity resulted in eight successive volcanic cycles forming the Pilbara Supergroup. Large volumes of granitic magma were intruded during the same period. By 3.22 Ga, a thick continental crust, the East Pilbara Terrane, had been established. Between 3.22 and 3.16 Ga, rifting of the East Pilbara Terrane separated off two additional terranes (Karratha and Kurrana), with intervening basins of oceanic crust. After 3.16 Ga, the three terranes began to converge, resulting in both obduction of oceanic crust (Regal Terrane) and, in another area, subduction to form a 3.13 Ga island arc (Sholl Terrane). At 3.07 Ga, the Karratha, Regal, and Sholl Terranes collided to form the West Pilbara Superterrane, and this collided with the East Pilbara Terrane. The 3.05–2.93 Ga De Grey Superbasin was deposited as a succession of basins: Gorge Creek, Whim Creek, Mallina, and Mosquito Creek. Eventual closure of the basins, between 2.94 and 2.93 Ga, formed two separate orogenic belts on either side of the East Pilbara Terrane. Post‐orogenic granites were intruded between 2.89 and 2.83 Ga. The 2.78–2.63 Ga Fortescue Basin developed in four stages: (i) rifting of the Pilbara Craton; (ii) folding and erosion; (iii) large igneous province (LIP) volcanism; and (iv) marine sedimentation on a passive margin. A review of all known evidence for early life in the Pilbara Craton is provided. In hydrothermal settings, most of the evidence occurs as filamentous and spheroidal microfossils, organic carbon, microbial mats, and rare stromatolites. By contrast, shallow‐water marine sedimentary rocks contain a diverse range of stromatolites, and microbial mats. Lacustrine and shallow‐water marine carbonate rocks in the Fortescue Basin contain abundant and morphologically diverse stromatolites, widespread microbial mats, and organic carbon.

Journal

Island ArcWiley

Published: Mar 1, 2012

There are no references for this article.