Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190

A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene... Only two polyethylene glycol terephthalate (PET)-degrading enzymes have been reported, and their mechanism for the biochemical degradation of PET remains unclear. To identify a novel PET-degrading enzyme, a putative cutinase gene (cut190) was cloned from the thermophile Saccharomonospora viridis AHK190 and expressed in Escherichia coli Rosetta-gami B (DE3). Mutational analysis indicated that substitution of Ser226 with Pro and Arg228 with Ser yielded the highest activity and thermostability. The Ca2+ ion enhanced the enzyme activity and thermostability of the wild-type and mutant Cut190. Circular dichroism suggested that the Ca2+ changes the tertiary structure of the Cut190 (S226P/R228S), which has optimal activity at 65–75 °C and pH 6.5–8.0 in the presence of 20 % glycerol. The enzyme was stable over a pH range of 5–9 and at temperatures up to 65 °C for 24 h with 40 % activity remaining after incubation for 1 h at 70 °C. The Cut190 (S226P/R228S) efficiently hydrolyzed various aliphatic and aliphatic-co-aromatic polyester films. Furthermore, the enzyme degraded the PET film above 60 °C. Therefore, Cut190 is the novel-reported PET-degrading enzyme with the potential for industrial applications in polyester degradation, monomer recycling, and PET surface modification. Thus, the Cut190 will be a useful tool to elucidate the molecular mechanisms of the PET degradation, Ca2+ activation, and stabilization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190

Loading next page...
 
/lp/springer-journals/a-novel-ca2-activated-thermostabilized-polyesterase-capable-of-27POLvPJFb

References (40)

Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
ISSN
0175-7598
eISSN
1432-0614
DOI
10.1007/s00253-014-5860-y
pmid
24929560
Publisher site
See Article on Publisher Site

Abstract

Only two polyethylene glycol terephthalate (PET)-degrading enzymes have been reported, and their mechanism for the biochemical degradation of PET remains unclear. To identify a novel PET-degrading enzyme, a putative cutinase gene (cut190) was cloned from the thermophile Saccharomonospora viridis AHK190 and expressed in Escherichia coli Rosetta-gami B (DE3). Mutational analysis indicated that substitution of Ser226 with Pro and Arg228 with Ser yielded the highest activity and thermostability. The Ca2+ ion enhanced the enzyme activity and thermostability of the wild-type and mutant Cut190. Circular dichroism suggested that the Ca2+ changes the tertiary structure of the Cut190 (S226P/R228S), which has optimal activity at 65–75 °C and pH 6.5–8.0 in the presence of 20 % glycerol. The enzyme was stable over a pH range of 5–9 and at temperatures up to 65 °C for 24 h with 40 % activity remaining after incubation for 1 h at 70 °C. The Cut190 (S226P/R228S) efficiently hydrolyzed various aliphatic and aliphatic-co-aromatic polyester films. Furthermore, the enzyme degraded the PET film above 60 °C. Therefore, Cut190 is the novel-reported PET-degrading enzyme with the potential for industrial applications in polyester degradation, monomer recycling, and PET surface modification. Thus, the Cut190 will be a useful tool to elucidate the molecular mechanisms of the PET degradation, Ca2+ activation, and stabilization.

Journal

Applied Microbiology and BiotechnologySpringer Journals

Published: Jun 15, 2014

There are no references for this article.