Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Quantum walks: a comprehensive review

Quantum walks: a comprehensive review Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete-time quantum walks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Quantum walks: a comprehensive review

Loading next page...
 
/lp/springer-journals/quantum-walks-a-comprehensive-review-0yIiAO48mG

References (507)

Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Data Structures, Cryptology and Information Theory; Quantum Physics; Quantum Information Technology, Spintronics; Mathematical Physics; Quantum Computing
ISSN
1570-0755
eISSN
1573-1332
DOI
10.1007/s11128-012-0432-5
Publisher site
See Article on Publisher Site

Abstract

Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete-time quantum walks.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jul 8, 2012

There are no references for this article.