Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Basement membrane components in healing rabbit corneal epithelial wounds: immunofluorescence and ultrastructural studies.

Basement membrane components in healing rabbit corneal epithelial wounds: immunofluorescence and... The nature of the substrate that supports epithelial migration in vivo is of interest, particularly with respect to mechanisms of wound healing. Immunofluorescence and electron microscopy were used to search for common substrate components in prototype rabbit corneal wounds: epithelial scrape wounds, in which the corneal or conjunctival epithelium migrated over the denuded lamina densa of the corneal basement membrane (CBM), and superficial keratectomy, in which the corneal epithelium migrated over a bare stroma without CBM. The corneal epithelium moved rapidly over the CBM or stroma to cover the defect within 2-3 d, whereas the conjunctival epithelium required 1-2 wk. In all wounds, fibronectin and fibrin/fibrinogen were deposited onto the bare surface within 8 h after wounding and persisted under the migrating epithelium until migration was complete. Bullous pemphigoid antigen (BPA), a normal component of the CBM, was removed with the epithelium upon scrape wounding and reappeared in the CBM after migration was completed. In contrast, the conjunctival epithelium had a continuous subepithelial band of BPA out to the migrating tip. Laminin, also a normal component of the CBM, was not removed in the scrape wounds, indicating that the region of least resistance to shear stress was between the BPA and laminin layers. Laminin was removed by superficial keratectomy and was not detectable under the leading edge of the migrating cells. Laminin and BPA were restored in the CBM by 2-4 wk. Type IV collagen could not be detected in normal CBM, but was conspicuously present in conjunctival basement membrane and in blood vessels. Focal bands of type IV collagen did appear in the newly synthesized CBM 2-4 wk after keratectomy. These results argue that BPA, laminin, and type IV collagen are not essential for the migration of corneal epithelium during wound healing and support the hypothesis that fibronectin and fibrin/fibrinogen are the common, perhaps the essential, components of the provisional matrix that serves as a substrate until the permanent attachment components are regenerated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Cell Biology Rockefeller University Press

Basement membrane components in healing rabbit corneal epithelial wounds: immunofluorescence and ultrastructural studies.

Loading next page...
 
/lp/rockefeller-university-press/basement-membrane-components-in-healing-rabbit-corneal-epithelial-0nskCzGDUE

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Rockefeller University Press
Copyright
© 1984 Rockefeller University Press
ISSN
0021-9525
eISSN
1540-8140
DOI
10.1083/jcb.98.1.128
Publisher site
See Article on Publisher Site

Abstract

The nature of the substrate that supports epithelial migration in vivo is of interest, particularly with respect to mechanisms of wound healing. Immunofluorescence and electron microscopy were used to search for common substrate components in prototype rabbit corneal wounds: epithelial scrape wounds, in which the corneal or conjunctival epithelium migrated over the denuded lamina densa of the corneal basement membrane (CBM), and superficial keratectomy, in which the corneal epithelium migrated over a bare stroma without CBM. The corneal epithelium moved rapidly over the CBM or stroma to cover the defect within 2-3 d, whereas the conjunctival epithelium required 1-2 wk. In all wounds, fibronectin and fibrin/fibrinogen were deposited onto the bare surface within 8 h after wounding and persisted under the migrating epithelium until migration was complete. Bullous pemphigoid antigen (BPA), a normal component of the CBM, was removed with the epithelium upon scrape wounding and reappeared in the CBM after migration was completed. In contrast, the conjunctival epithelium had a continuous subepithelial band of BPA out to the migrating tip. Laminin, also a normal component of the CBM, was not removed in the scrape wounds, indicating that the region of least resistance to shear stress was between the BPA and laminin layers. Laminin was removed by superficial keratectomy and was not detectable under the leading edge of the migrating cells. Laminin and BPA were restored in the CBM by 2-4 wk. Type IV collagen could not be detected in normal CBM, but was conspicuously present in conjunctival basement membrane and in blood vessels. Focal bands of type IV collagen did appear in the newly synthesized CBM 2-4 wk after keratectomy. These results argue that BPA, laminin, and type IV collagen are not essential for the migration of corneal epithelium during wound healing and support the hypothesis that fibronectin and fibrin/fibrinogen are the common, perhaps the essential, components of the provisional matrix that serves as a substrate until the permanent attachment components are regenerated.

Journal

The Journal of Cell BiologyRockefeller University Press

Published: Jan 1, 1984

There are no references for this article.