Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Expression Profile of Signal Transduction Components in a Sugarcane Population Segregating for Sugar Content

Expression Profile of Signal Transduction Components in a Sugarcane Population Segregating for... Sucrose is the major product of photosynthesis in many higher plants. It is transported from the source tissue through the phloem to various sink tissues to support plant growth, development and reproduction. Knowledge on the signal transduction pathways involved in sucrose synthesis in mature leaves is limited. Using a microarray approach, we analyzed the expression profiles of 1920 sugarcane genes encoding signal transduction elements, transcription factors and stress-related proteins. We used individuals from a population segregating for sugar content and gene expression profiles were obtained from seven individuals with highest and seven with lowest sugar content. Surprisingly, from the 24 differentially expressed genes, 19 were more expressed in plants containing low-sugar content. Three of these genes encoded 14-3-3 like proteins, which have been found to reduce sucrose phosphate synthase (SPS) activity. Another encoded an SNF1-related protein similar to a protein kinase that phosphorylates SPS in vitro making it a target for the interaction with 14-3-3 proteins. The up-regulation of eight stress related genes in the lower sugar content plants supports a view that sugar levels modulate a complex signal transduction network that seems to involve responses that are related to stress. Evidence that hormone signaling is related to the sucrose content was also found. These data reinforced the usefulness of genomic approaches to uncover how sucrose metabolism can be regulated in sugarcane. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tropical Plant Biology Springer Journals

Expression Profile of Signal Transduction Components in a Sugarcane Population Segregating for Sugar Content

Loading next page...
 
/lp/springer-journals/expression-profile-of-signal-transduction-components-in-a-sugarcane-0a2d4fQQ7h

References (63)

Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Life Sciences; Transgenics; Plant Ecology; Plant Breeding/Biotechnology; Plant Genetics & Genomics; Plant Sciences
ISSN
1935-9756
eISSN
1935-9764
DOI
10.1007/s12042-009-9031-8
Publisher site
See Article on Publisher Site

Abstract

Sucrose is the major product of photosynthesis in many higher plants. It is transported from the source tissue through the phloem to various sink tissues to support plant growth, development and reproduction. Knowledge on the signal transduction pathways involved in sucrose synthesis in mature leaves is limited. Using a microarray approach, we analyzed the expression profiles of 1920 sugarcane genes encoding signal transduction elements, transcription factors and stress-related proteins. We used individuals from a population segregating for sugar content and gene expression profiles were obtained from seven individuals with highest and seven with lowest sugar content. Surprisingly, from the 24 differentially expressed genes, 19 were more expressed in plants containing low-sugar content. Three of these genes encoded 14-3-3 like proteins, which have been found to reduce sucrose phosphate synthase (SPS) activity. Another encoded an SNF1-related protein similar to a protein kinase that phosphorylates SPS in vitro making it a target for the interaction with 14-3-3 proteins. The up-regulation of eight stress related genes in the lower sugar content plants supports a view that sugar levels modulate a complex signal transduction network that seems to involve responses that are related to stress. Evidence that hormone signaling is related to the sucrose content was also found. These data reinforced the usefulness of genomic approaches to uncover how sucrose metabolism can be regulated in sugarcane.

Journal

Tropical Plant BiologySpringer Journals

Published: Jul 15, 2009

There are no references for this article.