Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Water and heat fluxes in desert soils: 2. Numerical simulations

Water and heat fluxes in desert soils: 2. Numerical simulations Transient one‐dimensional fluxes of soil water (liquid and vapor) and heat in response to 1 year of atmospheric forcing were simulated numerically for a site in the Chihuahuan Desert of Texas. The model was initialized and evaluated using the monitoring data presented in a companion paper (Scanlon, this issue). Soil hydraulic and thermal properties were estimated a priori from a combination of laboratory measurements, models, and other published information. In the first simulation, the main drying curves were used to describe soil water retention, and hysteresis was ignored. Remarkable consistency was found between computed and measured water potentials and temperatures. Attenuation and phase shift of the seasonal cycle of water potentials below the shallow subsurface active zone (0.0‐ to 0.3‐m depth) were similar to those of temperatures, suggesting that water potential fluctuations were driven primarily by temperature changes. Water fluxes in the upper 0.3 m of soil were dominated by downward and upward liquid fluxes that resulted from infiltration of rain and subsequent evaporation from the surface. Upward flux was vapor dominated only in the top several millimeters of the soil during periods of evaporation. Below a depth of 0.3 m, water fluxes varied slowly and were dominated by downward thermal vapor flux that decreased with depth, causing a net accumulation of water. In a second simulation, nonhysteretic water retention was instead described by the estimated main wetting curves; the resulting differences in fluxes were attributed to lower initial water contents (given fixed initial water potential) and unsaturated hydraulic conductivities that were lower than they were in the first simulation. Below a depth of 0.3 m, the thermal vapor fluxes dominated and were similar to those in the first simulation. Two other simulations were performed, differing from the first only in the prescription of different (wetter) initial water potentials. These three simulations yielded identical solutions in the upper 0.2 m of soil after infiltration of summer rain; however, the various initial water potentials were preserved throughout the year at depths greater than 0.2 m. Comparison of all four simulations showed that the predominantly upward liquid fluxes below a depth of 0.2 m were very sensitive to the differences in water retention functions and initial water potentials among simulations, because these factors strongly affected hydraulic conductivities. Comparison of numerical modeling results with chemical tracer data showed that values of downward vapor flux below the surface evaporation zone were of the same order of magnitude as those previously estimated by analysis of depth distributions of bomb 3H (volatile) and bomb 36Cl (nonvolatile). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

Water and heat fluxes in desert soils: 2. Numerical simulations

Loading next page...
 
/lp/wiley/water-and-heat-fluxes-in-desert-soils-2-numerical-simulations-0Xrvd3KqS9

References (36)

Publisher
Wiley
Copyright
Copyright © 1994 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
DOI
10.1029/93WR03252
Publisher site
See Article on Publisher Site

Abstract

Transient one‐dimensional fluxes of soil water (liquid and vapor) and heat in response to 1 year of atmospheric forcing were simulated numerically for a site in the Chihuahuan Desert of Texas. The model was initialized and evaluated using the monitoring data presented in a companion paper (Scanlon, this issue). Soil hydraulic and thermal properties were estimated a priori from a combination of laboratory measurements, models, and other published information. In the first simulation, the main drying curves were used to describe soil water retention, and hysteresis was ignored. Remarkable consistency was found between computed and measured water potentials and temperatures. Attenuation and phase shift of the seasonal cycle of water potentials below the shallow subsurface active zone (0.0‐ to 0.3‐m depth) were similar to those of temperatures, suggesting that water potential fluctuations were driven primarily by temperature changes. Water fluxes in the upper 0.3 m of soil were dominated by downward and upward liquid fluxes that resulted from infiltration of rain and subsequent evaporation from the surface. Upward flux was vapor dominated only in the top several millimeters of the soil during periods of evaporation. Below a depth of 0.3 m, water fluxes varied slowly and were dominated by downward thermal vapor flux that decreased with depth, causing a net accumulation of water. In a second simulation, nonhysteretic water retention was instead described by the estimated main wetting curves; the resulting differences in fluxes were attributed to lower initial water contents (given fixed initial water potential) and unsaturated hydraulic conductivities that were lower than they were in the first simulation. Below a depth of 0.3 m, the thermal vapor fluxes dominated and were similar to those in the first simulation. Two other simulations were performed, differing from the first only in the prescription of different (wetter) initial water potentials. These three simulations yielded identical solutions in the upper 0.2 m of soil after infiltration of summer rain; however, the various initial water potentials were preserved throughout the year at depths greater than 0.2 m. Comparison of all four simulations showed that the predominantly upward liquid fluxes below a depth of 0.2 m were very sensitive to the differences in water retention functions and initial water potentials among simulations, because these factors strongly affected hydraulic conductivities. Comparison of numerical modeling results with chemical tracer data showed that values of downward vapor flux below the surface evaporation zone were of the same order of magnitude as those previously estimated by analysis of depth distributions of bomb 3H (volatile) and bomb 36Cl (nonvolatile).

Journal

Water Resources ResearchWiley

Published: Mar 1, 1994

There are no references for this article.