Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Analysis of RNA Silencing in Agroinfiltrated Leaves of Nicotiana Benthamiana and Nicotiana Tabacum

Analysis of RNA Silencing in Agroinfiltrated Leaves of Nicotiana Benthamiana and Nicotiana Tabacum In this study we analyse several aspects of cytoplasmic RNA silencing by agroinfiltration of DNA constructs encoding single- and double-stranded RNAs derived from a GFP transgene and from the endogenous Virp1 gene. Both types of inductors resulted after 2–4 days in much higher concentration of siRNAs in the agroinfiltrated zone than normally seen during systemic silencing. More specifically, infiltration of two transgene hairpin constructs resulted in elevated levels of siRNAs. However, differences between the two constructs were observed: the antisense–sense arrangement was more effective than the sense–antisense order. For both double-stranded forms, we observed a relative increase of the 24-mer size class of siRNAs. When a comparable hairpin construct of the endogenous Virp1 gene was assayed, the portion of the 24-mer siRNA class remained low as observed for all kinds of single-stranded inducers. The lack of increase of Virp1-derived 24-mers was independent of the expression level, as demonstrated by agroinfiltration into a transgenic plant that overexpressed Virp1 and showed the same pattern. Using transducer constructs, we could detect within a week transitive silencing from GFP to GUS sequences in the infiltrated zone and in either direction 5′–3′ and 3′–5′. Conversely, for the endogenous Virp1 gene neither transitive silencing nor the induction of systemic silencing could be observed. These results are discussed in view of the current models of RNA silencing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Analysis of RNA Silencing in Agroinfiltrated Leaves of Nicotiana Benthamiana and Nicotiana Tabacum

Loading next page...
 
/lp/springer-journals/analysis-of-rna-silencing-in-agroinfiltrated-leaves-of-nicotiana-07lDqsXTJk

References (60)

Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1007/s11103-005-0668-x
pmid
16244913
Publisher site
See Article on Publisher Site

Abstract

In this study we analyse several aspects of cytoplasmic RNA silencing by agroinfiltration of DNA constructs encoding single- and double-stranded RNAs derived from a GFP transgene and from the endogenous Virp1 gene. Both types of inductors resulted after 2–4 days in much higher concentration of siRNAs in the agroinfiltrated zone than normally seen during systemic silencing. More specifically, infiltration of two transgene hairpin constructs resulted in elevated levels of siRNAs. However, differences between the two constructs were observed: the antisense–sense arrangement was more effective than the sense–antisense order. For both double-stranded forms, we observed a relative increase of the 24-mer size class of siRNAs. When a comparable hairpin construct of the endogenous Virp1 gene was assayed, the portion of the 24-mer siRNA class remained low as observed for all kinds of single-stranded inducers. The lack of increase of Virp1-derived 24-mers was independent of the expression level, as demonstrated by agroinfiltration into a transgenic plant that overexpressed Virp1 and showed the same pattern. Using transducer constructs, we could detect within a week transitive silencing from GFP to GUS sequences in the infiltrated zone and in either direction 5′–3′ and 3′–5′. Conversely, for the endogenous Virp1 gene neither transitive silencing nor the induction of systemic silencing could be observed. These results are discussed in view of the current models of RNA silencing.

Journal

Plant Molecular BiologySpringer Journals

Published: Jul 10, 2005

There are no references for this article.