Visual assessment of sample quality: quo usque tandem?

Visual assessment of sample quality: quo usque tandem? Sample hemolysis is conventionally defined as the presence of a variable amount of cell-free hemoglobin in serum or plasma. The reference (i.e. “normal”) concentration of free and measurable hemoglobin conventionally ranges between 0.22 and 0.25 g/L in serum and between 0.10 and 0.13 g/L in plasma, respectively [1]. Although no definitive evidence exists about the threshold of “pathological” hemolysis in blood samples, universal consensus has been reached that clinically significant interference for the most hemolysis-vulnerable tests (i.e. potassium, lactate dehydrogenase, aspartate aminotransferase) may start with concentrations of cell-free hemoglobin ≥0.5 g/L [2], [3]. Notably, this cut-off is also conventionally used for monitoring phlebotomy practice [4].Although the very first studies about the impact of sample hemolysis on the quality of laboratory testing have been published more than 40 years ago [5], the frequency of hemolyzed samples remains high and generates remarkable challenges in clinical laboratory practice [6], [7], [8]. The first important issue is distinguishing between in vitro (i.e. spurious) and in vivo (i.e. hemolytic anemia) hemolysis. The differentiation between these conditions is not meaningless because the former case reflects a kaleidoscope of problems emerging throughout preanalytical sample management, thus including blood drawing, handling, transportation, storage and preparation for testing, http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Clinical Chemistry and Laboratory Medicine (CCLM) de Gruyter

Visual assessment of sample quality: quo usque tandem?

Loading next page...
 
/lp/degruyter/visual-assessment-of-sample-quality-quo-usque-tandem-AVGBt0QCXX
Publisher
De Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1437-4331
eISSN
1437-4331
D.O.I.
10.1515/cclm-2017-0867
Publisher site
See Article on Publisher Site

Abstract

Sample hemolysis is conventionally defined as the presence of a variable amount of cell-free hemoglobin in serum or plasma. The reference (i.e. “normal”) concentration of free and measurable hemoglobin conventionally ranges between 0.22 and 0.25 g/L in serum and between 0.10 and 0.13 g/L in plasma, respectively [1]. Although no definitive evidence exists about the threshold of “pathological” hemolysis in blood samples, universal consensus has been reached that clinically significant interference for the most hemolysis-vulnerable tests (i.e. potassium, lactate dehydrogenase, aspartate aminotransferase) may start with concentrations of cell-free hemoglobin ≥0.5 g/L [2], [3]. Notably, this cut-off is also conventionally used for monitoring phlebotomy practice [4].Although the very first studies about the impact of sample hemolysis on the quality of laboratory testing have been published more than 40 years ago [5], the frequency of hemolyzed samples remains high and generates remarkable challenges in clinical laboratory practice [6], [7], [8]. The first important issue is distinguishing between in vitro (i.e. spurious) and in vivo (i.e. hemolytic anemia) hemolysis. The differentiation between these conditions is not meaningless because the former case reflects a kaleidoscope of problems emerging throughout preanalytical sample management, thus including blood drawing, handling, transportation, storage and preparation for testing,

Journal

Clinical Chemistry and Laboratory Medicine (CCLM)de Gruyter

Published: Mar 28, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off