Visible and short-wave infrared reflectance spectroscopy of selected REE-bearing silicate minerals

Visible and short-wave infrared reflectance spectroscopy of selected REE-bearing silicate minerals AbstractNatural samples of the rare earth element (REE)-bearing silicate minerals cerite, mosandrite, kainosite, zircon, and eudialyte were studied using reflectance spectroscopy in the visible to short-wave infrared regions (500 to 2500 nm) and further characterized by scanning electron microscopy and electron microprobe analysis. Spectral features of these minerals are driven primarily by 4f-4f intraconfigurational electronic transitions of trivalent lanthanides, as well as 5f-5f electronic transitions of uranium and vibrational overtones and combinations of H2O and OH–. Spectra of eudialyte are also impacted by relative amounts of IVFe2+ and VFe2+. Respective spectra of these REE-bearing silicate minerals are sufficiently distinct to enable spectral classification. Spectral variability (e.g., band depths and locations) of some specific REE-related absorptions, such as an Er3+- and Yb3+-related absorption near 978 nm and Nd3+-related absorptions near 746, 803, and 875 nm, are interpreted to be driven by cation site differences in the crystal structures. This work adds to the growing understanding of REE-bearing mineral reflectance spectroscopy, which facilitates detection, identification, and quantification of REE-bearing silicate minerals in remote sensing applications. This is especially relevant for hyperspectral imaging spectroscopy with high spatial resolutions where the spectral response of a pixel becomes increasingly dominated by mineralogy rather than lithology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Mineralogist de Gruyter

Visible and short-wave infrared reflectance spectroscopy of selected REE-bearing silicate minerals

Loading next page...
 
/lp/degruyter/visible-and-short-wave-infrared-reflectance-spectroscopy-of-selected-Zw2zSQYTEJ
Publisher
de Gruyter
Copyright
© 2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
0003-004X
eISSN
1945-3027
D.O.I.
10.2138/am-2018-6195
Publisher site
See Article on Publisher Site

Abstract

AbstractNatural samples of the rare earth element (REE)-bearing silicate minerals cerite, mosandrite, kainosite, zircon, and eudialyte were studied using reflectance spectroscopy in the visible to short-wave infrared regions (500 to 2500 nm) and further characterized by scanning electron microscopy and electron microprobe analysis. Spectral features of these minerals are driven primarily by 4f-4f intraconfigurational electronic transitions of trivalent lanthanides, as well as 5f-5f electronic transitions of uranium and vibrational overtones and combinations of H2O and OH–. Spectra of eudialyte are also impacted by relative amounts of IVFe2+ and VFe2+. Respective spectra of these REE-bearing silicate minerals are sufficiently distinct to enable spectral classification. Spectral variability (e.g., band depths and locations) of some specific REE-related absorptions, such as an Er3+- and Yb3+-related absorption near 978 nm and Nd3+-related absorptions near 746, 803, and 875 nm, are interpreted to be driven by cation site differences in the crystal structures. This work adds to the growing understanding of REE-bearing mineral reflectance spectroscopy, which facilitates detection, identification, and quantification of REE-bearing silicate minerals in remote sensing applications. This is especially relevant for hyperspectral imaging spectroscopy with high spatial resolutions where the spectral response of a pixel becomes increasingly dominated by mineralogy rather than lithology.

Journal

American Mineralogistde Gruyter

Published: Jun 26, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off