Veränderung von Membranlipiden schützt vor neuronaler Insulinresistenz in Alzheimer-Modellen

Veränderung von Membranlipiden schützt vor neuronaler Insulinresistenz in Alzheimer-Modellen ZusammenfassungMorbus Alzheimer ist eine degenerative Erkrankung des zentralen Nervensystems, welche durch ein progressives Absterben von Nervenzellen und Synapsen zu schweren Gedächtnis- und Orientierungsstörungen führt. Lösliche β-Amyloid-Oligomere sind eine hoch neurotoxische Vorstufe der bei Alzheimer gebildeten β-Amyloid-Fibrillen. Die Bindung dieser β-Amyloid-Oligomere an synaptische Insulinrezeptoren führt zu einer neuronalen Insulinresistenz und trägt entscheidend zur Verschlechterung der kognitiven Leistung bei. Insulinrezeptoren befinden sich in der Zellmembran. Diese besteht aus einer Lipiddoppelschicht und weist eine hohe Konzentration von glykosylierten Lipiden, sogenannten Gangliosiden, auf. Ganglioside steuern die Aktivität von Insulinrezeptoren durch dynamische molekulare Interaktionen und begünstigen die durch β-Amyloid-Oligomere ausgelöste Insulinresistenz. Somit kann eine Hemmung der Gangliosidbiosynthese Nervenzellen vor den schädlichen Wirkungen der β-Amyloid-Oligomere schützen. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroforum de Gruyter

Veränderung von Membranlipiden schützt vor neuronaler Insulinresistenz in Alzheimer-Modellen

Loading next page...
 
/lp/degruyter/ver-nderung-von-membranlipiden-sch-tzt-vor-neuronaler-insulinresistenz-s1U9PFAB9P
Publisher
De Gruyter
Copyright
© 2017 by De Gruyter
ISSN
1868-856X
eISSN
1868-856X
D.O.I.
10.1515/nf-2017-0007
Publisher site
See Article on Publisher Site

Abstract

ZusammenfassungMorbus Alzheimer ist eine degenerative Erkrankung des zentralen Nervensystems, welche durch ein progressives Absterben von Nervenzellen und Synapsen zu schweren Gedächtnis- und Orientierungsstörungen führt. Lösliche β-Amyloid-Oligomere sind eine hoch neurotoxische Vorstufe der bei Alzheimer gebildeten β-Amyloid-Fibrillen. Die Bindung dieser β-Amyloid-Oligomere an synaptische Insulinrezeptoren führt zu einer neuronalen Insulinresistenz und trägt entscheidend zur Verschlechterung der kognitiven Leistung bei. Insulinrezeptoren befinden sich in der Zellmembran. Diese besteht aus einer Lipiddoppelschicht und weist eine hohe Konzentration von glykosylierten Lipiden, sogenannten Gangliosiden, auf. Ganglioside steuern die Aktivität von Insulinrezeptoren durch dynamische molekulare Interaktionen und begünstigen die durch β-Amyloid-Oligomere ausgelöste Insulinresistenz. Somit kann eine Hemmung der Gangliosidbiosynthese Nervenzellen vor den schädlichen Wirkungen der β-Amyloid-Oligomere schützen.

Journal

Neuroforumde Gruyter

Published: Nov 27, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial