Thermal degradation of coir fiber reinforced low-density polyethylene composites

Thermal degradation of coir fiber reinforced low-density polyethylene composites AbstractIn the present study, the effect of fiber surface treatments (alkali and acrylic acid) on the thermal degradation behavior of coir fiber (CF)-low-density polyethylene (LDPE) composites with or without compatibilizer (maleic anhydride grafted LDPE, MA-g-LDPE) using thermogravimetric and derivative thermogravimetric analyses (TG/DTG) was analyzed and compared with those of untreated fiber composites. The TG/DTG results revealed that the thermal stability of the CF improved after the chemical treatments. However, the composite containing treated fiber showed lower thermal stability and started to degrade at a faster rate above 380°C in comparison to composites containing untreated fiber composites. Furthermore, the addition of MA-g-LDPE led to improvement in the thermal stability of both treated and untreated fiber composites in comparison to the same composite formulation without MA-g-LDPE. The composite containing untreated fiber and MA-g-LDPE demonstrated superior thermal stability among all the formulated composites, indicating strong fiber-matrix adhesion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science and Engineering of Composite Materials de Gruyter

Thermal degradation of coir fiber reinforced low-density polyethylene composites

Loading next page...
 
/lp/degruyter/thermal-degradation-of-coir-fiber-reinforced-low-density-polyethylene-nNpDwNg06M
Publisher
De Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
2191-0359
eISSN
2191-0359
D.O.I.
10.1515/secm-2015-0422
Publisher site
See Article on Publisher Site

Abstract

AbstractIn the present study, the effect of fiber surface treatments (alkali and acrylic acid) on the thermal degradation behavior of coir fiber (CF)-low-density polyethylene (LDPE) composites with or without compatibilizer (maleic anhydride grafted LDPE, MA-g-LDPE) using thermogravimetric and derivative thermogravimetric analyses (TG/DTG) was analyzed and compared with those of untreated fiber composites. The TG/DTG results revealed that the thermal stability of the CF improved after the chemical treatments. However, the composite containing treated fiber showed lower thermal stability and started to degrade at a faster rate above 380°C in comparison to composites containing untreated fiber composites. Furthermore, the addition of MA-g-LDPE led to improvement in the thermal stability of both treated and untreated fiber composites in comparison to the same composite formulation without MA-g-LDPE. The composite containing untreated fiber and MA-g-LDPE demonstrated superior thermal stability among all the formulated composites, indicating strong fiber-matrix adhesion.

Journal

Science and Engineering of Composite Materialsde Gruyter

Published: Mar 28, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial