The UGT1A1*28 gene variant predicts long-term mortality in patients undergoing coronary angiography

The UGT1A1*28 gene variant predicts long-term mortality in patients undergoing coronary angiography AbstractBackground:Uridine diphosphate glycosyltransferases 1A1 (UGT1A1) plays an essential role in detoxification and excretion of several endogenous and exogenous compounds. A functional polymorphism in the promoter of the UGT1A1 gene (TA repeat insertion, UGT1A1*28, rs3064744) has been associated with reduced UGT1A1 enzyme activity. The purpose of the present study was to investigate the role of UGT1A1 genotypes in mortality.Methods:UGT1A1 genotypes as well as baseline plasma bilirubin levels were analyzed in participants of the Ludwigshafen Risk and Cardiovascular Health study (n=3316). UGT1A1*28 genotypes were determined on an ABI PRISM 3730 genetic analyzer.Results:As expected, UGT1A1 genotypes were associated with baseline bilirubin levels (*1/*1 genotype: 9.1±4.6 µmol/L; *1/*28 genotype: 10.8±5.3; *28/*28: 16.9±9.2; p<0.001). During a median follow-up of 10.4 years, 995 subjects (30.0%) died. In a multivariate regression analysis adjusting for age, sex, smoking, type 2 diabetes, dyslipidemia, alanine aminotransferase (ALT) levels and bilirubin levels, the UGT1A1*28 variant predicted lower overall mortality (hazard ratio [HR], 0.86; 95% confidence interval [CI], 0.78–0.95; p=0.003). Contrary to expected, higher baseline bilirubin levels predicted increased mortality (HR, 1.014; 95% CI, 1.002–1.025; p=0.019).Conclusions:The UGT1A1*28 gene variant is associated with lower mortality rates. The protective effect of the UGT1A1*28 variant likely includes mechanism other than bilirubin metabolism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Clinical Chemistry and Laboratory Medicine (CCLM) de Gruyter

The UGT1A1*28 gene variant predicts long-term mortality in patients undergoing coronary angiography

Loading next page...
 
/lp/degruyter/the-ugt1a1-28-gene-variant-predicts-long-term-mortality-in-patients-0ZYEuEeMDf
Publisher
De Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1437-4331
eISSN
1437-4331
D.O.I.
10.1515/cclm-2017-0692
Publisher site
See Article on Publisher Site

Abstract

AbstractBackground:Uridine diphosphate glycosyltransferases 1A1 (UGT1A1) plays an essential role in detoxification and excretion of several endogenous and exogenous compounds. A functional polymorphism in the promoter of the UGT1A1 gene (TA repeat insertion, UGT1A1*28, rs3064744) has been associated with reduced UGT1A1 enzyme activity. The purpose of the present study was to investigate the role of UGT1A1 genotypes in mortality.Methods:UGT1A1 genotypes as well as baseline plasma bilirubin levels were analyzed in participants of the Ludwigshafen Risk and Cardiovascular Health study (n=3316). UGT1A1*28 genotypes were determined on an ABI PRISM 3730 genetic analyzer.Results:As expected, UGT1A1 genotypes were associated with baseline bilirubin levels (*1/*1 genotype: 9.1±4.6 µmol/L; *1/*28 genotype: 10.8±5.3; *28/*28: 16.9±9.2; p<0.001). During a median follow-up of 10.4 years, 995 subjects (30.0%) died. In a multivariate regression analysis adjusting for age, sex, smoking, type 2 diabetes, dyslipidemia, alanine aminotransferase (ALT) levels and bilirubin levels, the UGT1A1*28 variant predicted lower overall mortality (hazard ratio [HR], 0.86; 95% confidence interval [CI], 0.78–0.95; p=0.003). Contrary to expected, higher baseline bilirubin levels predicted increased mortality (HR, 1.014; 95% CI, 1.002–1.025; p=0.019).Conclusions:The UGT1A1*28 gene variant is associated with lower mortality rates. The protective effect of the UGT1A1*28 variant likely includes mechanism other than bilirubin metabolism.

Journal

Clinical Chemistry and Laboratory Medicine (CCLM)de Gruyter

Published: Mar 28, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off