The effect of the through-thickness moisture content gradient on the moisture accelerated creep of paperboard: Hygro-viscoelastic modeling approach

The effect of the through-thickness moisture content gradient on the moisture accelerated creep... AbstractPaper-based materials are viscous materials, the time-dependent behavior of which depends strongly on moisture content. Particularly the creep of paperboard containers under compressive forces is greatly affected by changes in the relative humidity. In the present paper, we examine the creep behavior of paperboard under cyclic humidity conditions using the finite element method. Especially the shape and rate of the through-thickness moisture content gradient on moisture accelerated creep are studied. An isotropic hygro-viscoelastic constitutive law is used for paperboard. The results of the simulations are compared with experiments. It is concluded that the through-thickness moisture gradients have a great impact on the moisture accelerated creep of paperboard. Furthermore, the results show that depending on the direction of external load the through-thickness moisture content gradient may increase or decrease creep rate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nordic Pulp & Paper Research Journal de Gruyter

The effect of the through-thickness moisture content gradient on the moisture accelerated creep of paperboard: Hygro-viscoelastic modeling approach

Loading next page...
 
/lp/degruyter/the-effect-of-the-through-thickness-moisture-content-gradient-on-the-bdGGDFkvVY
Publisher
De Gruyter Oldenbourg
Copyright
© 2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
0283-2631
eISSN
2000-0669
D.O.I.
10.1515/npprj-2018-3001
Publisher site
See Article on Publisher Site

Abstract

AbstractPaper-based materials are viscous materials, the time-dependent behavior of which depends strongly on moisture content. Particularly the creep of paperboard containers under compressive forces is greatly affected by changes in the relative humidity. In the present paper, we examine the creep behavior of paperboard under cyclic humidity conditions using the finite element method. Especially the shape and rate of the through-thickness moisture content gradient on moisture accelerated creep are studied. An isotropic hygro-viscoelastic constitutive law is used for paperboard. The results of the simulations are compared with experiments. It is concluded that the through-thickness moisture gradients have a great impact on the moisture accelerated creep of paperboard. Furthermore, the results show that depending on the direction of external load the through-thickness moisture content gradient may increase or decrease creep rate.

Journal

Nordic Pulp & Paper Research Journalde Gruyter

Published: May 23, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off